An uniform ergodic theorem for linearly repetitive sets

José ALISTE-PRIETO

Centro de Modelamiento Matemático University of Chile, Chile

Erwin Schrödinger Institute for Mathematical Physics Vienna

December 3, 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fibonacci sequence

Let $\mathbf{x}_{Fib} = (x_n)_{n \in \mathbb{Z}}$ be the Fibonacci sequence. substitution: $a \mapsto ab, b \mapsto a$ k.a a.ab ab.aba $X = \overline{\{\sigma^n(\mathbf{x}_{Fib})\}}$ is uniquely ergodic. Let $w = x_{[n,n+k]}$, $n \in \mathbb{Z}$ and k > 0. Then, 1

...abaab.abaababa...

 $\frac{1}{2N} \sharp \{\ell \in [-N, N] \mid x_{[\ell, \ell+k]} = w\}$

converges to *frequency* of w, but how fast? Last equation is just the Birkhoff Ergodic theorem for σ and $\chi_{[.w]}$.

General Cohomological Considerations

Let (X, σ) be a uniquely ergodic shift (like before), and f be continuous function. Then

$$\frac{1}{N}\sum_{i=0}^{N-1}f(\sigma^{i}(x)) \stackrel{N \to +\infty}{\to} \int f \,\mathrm{d}\mu$$

uniformly in $x \in X$, i.e.

$$\operatorname{dev}_f(x,N) := \sum_{i=0}^{N-1} f(\sigma^i(x)) - N \int f \, \mathrm{d}\mu$$

is sublinear.

Theorem (Halasz, Kachurovskii)

The best rate of convergence is $dev_f(x, N)$ uniformly bounded and this happens when f is $dev_f(x, N)$ is uniformly bounded if and only if dev is a continuous coboundary, i.e., there exists ϕ such that

$$f(x) - \int f \, \mathrm{d}\mu = \phi(\sigma(x)) - \phi(x)$$

Cohomological Considerations

If
$$f = \chi_C$$
, then
Corollary (Halasz)
If $\frac{1}{2N} \sharp \{\ell \in [-N, N] \mid x_{[\ell, \ell+k]} = w\} = O(1/N)$, then $\mu([w])$ is an eigenvalue of (X, σ) .

$a\mapsto\psi(a)=aba$,		
$b\mapsto \psi(b)=ab.$		b.a
	a b	ab.aba
$\mathit{M}=~\psi(\mathit{a})$	2 1	abaab.abaababa
$\psi(b)$	1 1	abaababaabaab.abaababaabaabaababaa
freq(a):		$F_n = rac{1}{\sqrt{5}}(arphi^n - (-1/arphi)^n)$
1/2	(<i>b.a</i>)	Then
3/5	$(\psi(b.a))$	i nen
8/13	$(\psi^2(b.a))$	$F_{2n+2} - F_{2n+3} \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} (1 + \varphi^2) \varphi^{-2n-4}$
21/34	$(\psi^3(b.a))$	$arphi$ $\sqrt{5}$
÷		Convergence is exponential on <i>n</i> ! But the size of the window grows
F_{2n+2}/F_{2n+3}		exponentially!
\downarrow		
1/arphi,	$\varphi = \frac{\sqrt{5}+1}{2}$	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to use the previous convergence and decomposition to estimate the deviation?

Example: N = 12, need to count how many a's in

baababaabaab.abaababaabaa

Let $n = 2 \sim \lfloor \log N \rfloor$. To the right we have

Thus,

$$n_a(\mathbf{x}_{[0,12]}) = n_a(\psi^2(a)) + n_a(\psi(a)) + 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to use the previous convergence and decomposition to estimate the deviation?

Example: N = 17, need to count how many a's in

baababaabaab.abaababaabaabaabaa

Let $n = 2 \sim \lfloor \log N \rfloor$. To the right we have

Thus,

$$n_a(\mathbf{x}_{[0,17]}) = n_a(\psi^2(a)) + n_a(\psi^2(b)) + n_a(\psi(a)) + 1$$

More generally,

$$n_{a}(\mathbf{x}_{[0,N]}) - \frac{N}{\varphi} = \sum_{k=0}^{\lfloor \log N \rfloor} \ell_{a,k} \left(n_{a}(\psi^{k}(a)) - \frac{|\psi^{k}(a)|}{\varphi} \right)$$
$$+ \sum_{k=0}^{\lfloor \log N \rfloor} \ell_{b,k} \left(n_{a}(\psi^{k}(b)) - \frac{|\psi^{k}(b)|}{\varphi} \right) \quad (0.1)$$
$$\ell_{a,k} < C, n_{a}(\psi^{k}(a)) = F_{2k-1}, \quad |\psi^{k}(a)| = F_{2k}$$

and similarly for b. Hence,

$$\|n_{a}(\mathbf{x}_{[0,N]}) - \frac{N}{\varphi}\| \leq 2C \frac{1+\varphi^{2}}{\sqrt{5}\varphi^{3}} \sum_{k=0}^{\lfloor \log N \rfloor} \varphi^{-2n} \leq C'$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

More generally,

$$n_{a}(\mathbf{x}_{[0,N]}) - \frac{N}{\varphi} = \sum_{k=0}^{\lfloor \log N \rfloor} \ell_{a,k} \left(n_{a}(\psi^{k}(a)) - \frac{|\psi^{k}(a)|}{\varphi} \right) + \sum_{k=0}^{\lfloor \log N \rfloor} \ell_{b,k} \left(n_{a}(\psi^{k}(b)) - \frac{|\psi^{k}(b)|}{\varphi} \right) \quad (0.1)$$
$$\ell_{a,k} < C, n_{a}(\psi^{k}(a)) = F_{2k-1}, \quad |\psi^{k}(a)| = F_{2k}$$

and similarly for b. Hence,

$$\|n_{a}(\mathbf{x}_{[0,N]}) - \frac{N}{\varphi}\| \leq 2C \frac{1+\varphi^{2}}{\sqrt{5}\varphi^{3}} \sum_{k=0}^{\lfloor \log N \rfloor} \varphi^{-2n} \leq C'$$

All of these formulas work since $M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ is a Pisot Matrix! Of course, we get again that $1/\varphi$ is an eigenvalue of (X_{fib}, σ) . More generally,

$$n_{a}(\mathbf{x}_{[0,N]}) - \frac{N}{\varphi} = \sum_{k=0}^{\lfloor \log N \rfloor} \ell_{a,k} \left(n_{a}(\psi^{k}(a)) - \frac{|\psi^{k}(a)|}{\varphi} \right) + \sum_{k=0}^{\lfloor \log N \rfloor} \ell_{b,k} \left(n_{a}(\psi^{k}(b)) - \frac{|\psi^{k}(b)|}{\varphi} \right) \quad (0.1)$$

$$\ell_{\mathsf{a},\mathsf{k}} < \mathcal{C}, n_{\mathsf{a}}(\psi^{\mathsf{k}}(\mathsf{a})) = F_{2\mathsf{k}-1}, \quad |\psi^{\mathsf{k}}(\mathsf{a})| = F_{2\mathsf{k}}$$

and similarly for b. Hence,

$$\|n_{a}(\mathbf{x}_{[0,N]}) - \frac{N}{\varphi}\| \leq 2C \frac{1+\varphi^{2}}{\sqrt{5}\varphi^{3}} \sum_{k=0}^{\lfloor \log N \rfloor} \varphi^{-2n} \leq C'$$

All of these formulas work since $M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ is a Pisot Matrix! Of course, we get again that $1/\varphi$ is an eigenvalue of (X_{fib}, σ) . Theorem

If (X, σ) is associated to a Pisot substitution, then there is fast convergence (for all words)!

Linearly repetitivity

For X a tiling or a Delone set

◆□> ◆□> ◆豆> ◆豆> □豆

Uniform patch frequencies

Given a bounded measurable set $D \subset \mathbb{R}^d$ and $\mathbf{p} = X \cap B_r(x_0)$, define

 $n_{\mathbf{p}}(D) = \operatorname{card} \{ y \in Y \cap D \mid Y \cap \overline{B}_r(y) \text{ is a copy of } \mathbf{p} \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Uniform patch frequencies

Given a bounded measurable set $D \subset \mathbb{R}^d$ and $\mathbf{p} = X \cap B_r(x_0)$, define

 $n_{\mathbf{p}}(D) = \operatorname{card} \{ y \in Y \cap D \mid Y \cap \overline{B}_r(y) \text{ is a copy of } \mathbf{p} \}.$

Definition

X has uniform patch frequencies if

$$\lim_{N \to +\infty} \frac{n_{\mathbf{p}}([-N, N]^d + x)}{\operatorname{vol}([-N, N]^d + x)} = \operatorname{freq}(\mathbf{p})$$

exists uniformly on $x \in \mathbb{R}^d$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lagarias and Pleasants's Theorem

The deviation of frequence for a patch \mathbf{p} in a measurable set E is defined:

$$\operatorname{dev}_{p}(E) = |n_{\mathbf{p}}(E, X) - \operatorname{freq}(\mathbf{p})\operatorname{vol}(E)|. \tag{0.2}$$

Theorem (Lagarias and Pleasants)

Let X be a linearly repetitive tiling. Let E_N be either the sequence of balls $B_N(0)$ or the sequence of boxes $[-N, N]^d$. There exists $\delta > 0$ such that for every patch **p** of X we have

$$\operatorname{dev}_{\rho}(E_N) = O(N^{d-\delta}), \qquad (0.3)$$

Remark

In the original proof, δ depends on E_N .

Theorem

Linearly repetitive tilings admit a "properly nested" sequence of tilings (conjugate to the original one).

Remark

This sequence is not stationary, unless the tiling is self-similar, but in this case, the sequence is obvios and DO not follow from our construction.

Lemma

This properly nested sequence of tilings induces a Non-stationary Markov Chain such that counting the occurrences of a tile of level m in a tile of level n converges exponentially fast to the frequency of the tile.

Proposition

Each region D can be "hierarchically decomposed"

Theorem (Coronel, A.-P.)

Let X be linearly repetitive. There is $\delta > 0$ (which depends only on X) such that

$$\operatorname{dev}_{\mathbf{p}}(E_N)/\operatorname{vol}(E_N) = O(N^{-\delta})$$

Remark

 E_N may be $[-N, N]^d$, $B_N(0)$ or $E_N = N \cdot E$, where E is a convex set, more general?

Theorem

If X is self-similar (Primitive Matrix) with Perron Eigenvalue λ and second eigenvalue τ . Let $\rho = \tau \lambda^{1/d-1}$. Then:

- ▶ if ρ < 1 then convergence is fast!</p>
- if $\rho = 1$ then $\operatorname{dev}_{\rho}(E_N)/\operatorname{vol} E_N = O(\log^m N)$.
- if $\rho > 1$ then $\operatorname{dev}_{\rho}(E_N)/\operatorname{vol} E_N = O(N^{-\delta})$.