Tower systems for Linearly Repetitive Delone sets

¹José Aliste-Prieto ²Daniel Coronel

¹Center for Mathematical Modelling University of Chile

²Department of Mathematics Catholic University of Chile

Workshop for Aperiodic order and dynamics Bielefeld, March 2011

Introduction	Basic Definitions	Tower systems for Delone systems	Tower systems for Delone dynamical systems
		Motivation	

Let X be an aperiodic (general) repetitive Delone set (or tiling) and let (Ω, T) be its associated tiling dynamical system: We want to understand the dynamical properties of the translation action T:

- Eigenvalues?
- Ergodic/Mixing properties?

The idea of this talk is to introduce a technique, that allows to understand these kind of problems, and hopefully others.

2 / 22

Minimal Cantor systems

- A minimal Cantor system (X, T) is a pair s.t.:
 - X is a Cantor set.
 - $T: X \rightarrow X$ is a minimal homeomorphism, i.e., every orbit is dense.
 - Fix μ an *T*-invariant probability measure.
- λ in \mathcal{S}^1 is an eigenvalue of (X, T) if there exists $f \in L^2(X, \mathcal{S}^1)$ such that

$$f(Tx) = \lambda f(x)$$

for all $x \in X$.

• λ is a continuous eigenvalue if f can be chosen continuous.

Question

How about studying the eigenvalues of (X, T)?

dynaper 3 / 22

Kakutani-Rokhlin (KR) partitions

- A Rokhlin tower is a pairwise disjoint family ${\mathcal T}$ of measurable sets of the form

$$\mathcal{T} = \{T^j C\}_{j=0}^{h-1},$$

- Define *floor*, *height*, *stages* and give basic example.
- A Kakutani-Rokhlin partition \mathcal{P} of X is a partition by Rohlin towers, i.e.,

$$\mathcal{P} = \{ T^j C_i \mid i \in \{1, \ldots, n\}, j \in \{0, \ldots, h_i\} \},\$$

Define *base*.

Introduction

Constructing KR partitions

Lemma (Host-Putnam-Skau?)

Let (X, T) be a minimal Cantor set. If C is any clopen-open subset of X, then there exists a KR partition \mathcal{P} with base C.

Proof.

$$I : C \to \mathbb{N} \text{ defined by }$$

$$R(x) = \inf\{k > 0 \mid T^k(x) \in C\}$$

is continuous.

- 2 Hence, $R(C) = \{h_1, \ldots, h_k\}$ for some $k \in \mathbb{N}$.
- 3 Thus, setting $C_i := R^{-1}(h_i)$ we get a KR partition

$$\{T^{j}C_{i}: i \in \{1, \ldots, k\}, j \in \{0, \ldots, h_{i} - 1\}\}$$

Tower systems for minimal Cantor systems

A Kakutani-Rokhlin tower system for (X, T) is a sequence $(\mathcal{P}_n)_{n \in \mathbb{N}}$ of Kakutani-Rokhlin partitions such that:

- \mathcal{P}_{n+1} refines \mathcal{P}_n for all $n \in \mathbb{N}$.
- The base of \mathcal{P}_{n+1} is included in the base of \mathcal{P}_n .
- Other technical conditions ...

Theorem (Host-Putnam-Skau?)

Every minimal Cantor system (X, T) admits a Kakutani-Rokhlin tower system.

$$\mathcal{P}_n = \{T^j B_i(n) \mid i \in \{1, \dots, k(n)\}, j \in \{0, \dots, h_i(n)\}\},\$$

Proof.

Apply Lemma to a decreasing sequence $(C_n)_{n\in\mathbb{N}}$ of clopen subsets of X with diam $(C_n) \to 0$ as $n \to \infty$.

Introduction

Characterization of Eigenvalues for minimal Cantor systems

Let (X, T) be a minimal Cantor system and $(\mathcal{P}_k)_k$ be a KR tower system. There exist "transition matrices" M(n) such that

 $M_{l,k}(n) = \sharp \{ 0 \leq j < h_l(n) \mid T^j B_l(n) \subseteq B_k(n-1) \}.$

Theorem (Cortez, Durand, Host, Maass, Bressaud)

Suppose that the matrices M(n) are uniformly bounded (in size and norm). Let $\lambda = \exp(2\pi\alpha)$, where $\alpha \in \mathbb{R}$. Then:

- (X, T) is uniquely ergodic.
- (X, T, μ) is not strongly mixing.
- λ is an eigenvalue if and only if $\sum_{n\geq 0} \max_k |\lambda^{h_k(n)} 1|^2 < +\infty$.
- λ is a continuous eigenvalue if and only if ∑_{n≥0} max_k |λ^{h_k(n)} − 1| < +∞.

Image: A math a math

DQA

Let X be an aperiodic (general) repetitive Delone set (or tiling) and let (Ω, T) be its associated tiling dynamical system: We want to understand the dynamical properties of the translation action T:

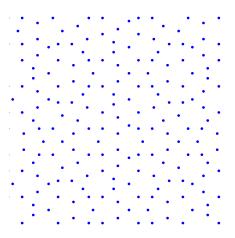
Question

Which of these results still hold for tilings and delone sets?

Question

What's the relation between minimal Cantor sets and Tilings and Delone sets.

Delone sets

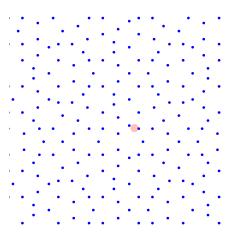


A subset X of the Euclidean space \mathbb{R}^d is *Delone* if

- it is uniformly discrete,
- and relatively dense.

靈

Delone sets



A subset X of the Euclidean space \mathbb{R}^d is *Delone* if

• it is uniformly discrete,

There exists r > 0 s.t. every ball of radius rcontains *at most* one point of X.

• and relatively dense.

Delone sets



A subset X of the Euclidean space \mathbb{R}^d is *Delone* if

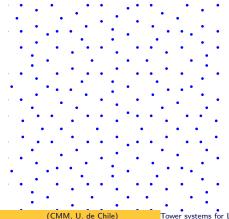
- it is uniformly discrete,
- and relatively dense.

There exists R > 0 s.t. every ball of radius Rcontains *at least* one point of X.

Repetitive Delone sets

Let X be a Delone set. Given S > 0 and $x \in X$, the *S*-pattern around x is defined as

$$X \wedge B(x,S) := (X \cap B(x,S), B(x,S)).$$



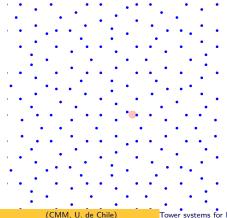
- We say that X is repetitive if for every S > 0 there exists M > 0 such that each ball of radius M contains a *translated copy* of every S-patch of X.
- The repetitivity function $M_X(S)$ is the smallest such M.
- X is linearly repetitive if there exists L > 1 such that $M_X(S) \le LS$.

Tower systems for Linearly Repetitive Delone

Repetitive Delone sets

Let X be a Delone set. Given S > 0 and $x \in X$, the *S*-pattern around x is defined as

$$X \wedge B(x,S) := (X \cap B(x,S), B(x,S)).$$



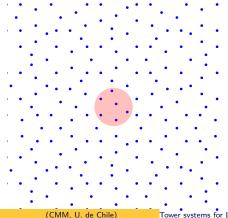
- We say that X is repetitive if for every S > 0 there exists M > 0 such that each ball of radius M contains a *translated copy* of every S-patch of X.
- The repetitivity function $M_X(S)$ is the smallest such M.
- X is linearly repetitive if there exists L > 1 such that $M_X(S) \le LS$.

Tower systems for Linearly Repetitive Delone

Repetitive Delone sets

Let X be a Delone set. Given S > 0 and $x \in X$, the *S*-pattern around x is defined as

$$X \wedge B(x,S) := (X \cap B(x,S), B(x,S)).$$



- We say that X is repetitive if for every S > 0 there exists M > 0 such that each ball of radius M contains a *translated copy* of every S-patch of X.
- The repetitivity function $M_X(S)$ is the smallest such M.
- X is linearly repetitive if there exists L > 1 such that $M_X(S) \le LS$.

Tower systems for Linearly Repetitive Delone

Let X be a repetitive Delone set.

• Given $t \in \mathbb{R}^d$ define

 $T_t X := X - t = \{x - t : x \in X\}.$

- X is aperiodic if $T_t X \neq X$ for all $t \in \mathbb{R}^d$.
- The *T*-orbit of *X* is

 $X - \mathbb{R}^d = \{X - t : t \in \mathbb{R}^d\}.$

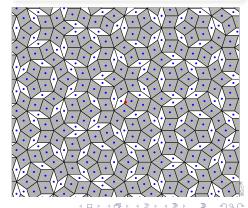
• dist $(X - t, X - s) < \epsilon$ if

 $X \cap B_R(t) \equiv X \cap B_R(s+x)$

where $||x|| < \epsilon$ and $R > 1/\epsilon$.

Definition

The *hull* Ω is the completion of $X - \mathbb{R}^d$.



Let X be a repetitive Delone set.

• Given $t \in \mathbb{R}^d$ define

 $T_t X := X - t = \{x - t : x \in X\}.$

- X is aperiodic if $T_t X \neq X$ for all $t \in \mathbb{R}^d$.
- The *T*-orbit of *X* is

 $X - \mathbb{R}^d = \{X - t : t \in \mathbb{R}^d\}.$

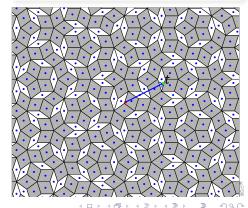
• dist $(X - t, X - s) < \epsilon$ if

 $X \cap B_R(t) \equiv X \cap B_R(s+x)$

where $||x|| < \epsilon$ and $R > 1/\epsilon$.

Definition

The *hull* Ω is the completion of $X - \mathbb{R}^d$.



(CMM, U. de Chile)

Tower systems for Linearly Repetitive Delone

Let X be a repetitive Delone set.

• Given $t \in \mathbb{R}^d$ define

 $T_t X := X - t = \{x - t : x \in X\}.$

- X is aperiodic if $T_t X \neq X$ for all $t \in \mathbb{R}^d$.
- The *T*-orbit of *X* is

 $X - \mathbb{R}^d = \{X - t : t \in \mathbb{R}^d\}.$

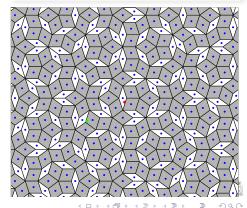
• dist $(X - t, X - s) < \epsilon$ if

 $X \cap B_R(t) \equiv X \cap B_R(s+x),$

where $||x|| < \epsilon$ and $R > 1/\epsilon$.

Definition

The *hull* Ω is the completion of $X - \mathbb{R}^d$.



(CMM, U. de Chile)

Tower systems for Linearly Repetitive Delone

Let X be a repetitive Delone set.

• Given $t \in \mathbb{R}^d$ define

 $T_t X := X - t = \{x - t : x \in X\}.$

- X is aperiodic if $T_t X \neq X$ for all $t \in \mathbb{R}^d$.
- The *T*-orbit of *X* is

 $X - \mathbb{R}^d = \{X - t : t \in \mathbb{R}^d\}.$

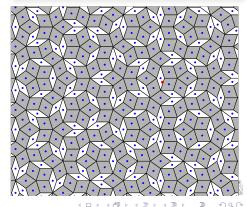
• dist $(X - t, X - s) < \epsilon$ if

 $X \cap B_R(t) \equiv X \cap B_R(s+x),$

where $||x|| < \epsilon$ and $R > 1/\epsilon$.

Definition

The *hull* Ω is the completion of $X - \mathbb{R}^d$.



Let X be a repetitive Delone set.

• Given $t \in \mathbb{R}^d$ define

 $T_t X := X - t = \{x - t : x \in X\}.$

- X is aperiodic if $T_t X \neq X$ for all $t \in \mathbb{R}^d$.
- The *T*-orbit of *X* is

 $X - \mathbb{R}^d = \{X - t : t \in \mathbb{R}^d\}.$

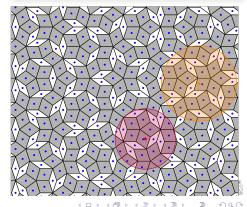
• dist $(X - t, X - s) < \epsilon$ if

 $X \cap B_R(t) \equiv X \cap B_R(s+x),$

where $||x|| < \epsilon$ and $R > 1/\epsilon$.

Definition

The *hull* Ω is the completion of $X - \mathbb{R}^d$.



(CMM, U. de Chile)

Tower systems for Linearly Repetitive Delone

Let X be a repetitive Delone set.

• Given $t \in \mathbb{R}^d$ define

 $T_t X := X - t = \{x - t : x \in X\}.$

- X is aperiodic if $T_t X \neq X$ for all $t \in \mathbb{R}^d$.
- The *T*-orbit of *X* is

$$X-\mathbb{R}^d=\{X-t:t\in\mathbb{R}^d\}.$$

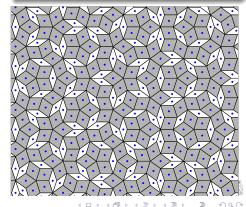
• dist $(X - t, X - s) < \epsilon$ if

$$X \cap B_R(t) \equiv X \cap B_R(s+x)$$

where $||x|| < \epsilon$ and $R > 1/\epsilon$.

Definition

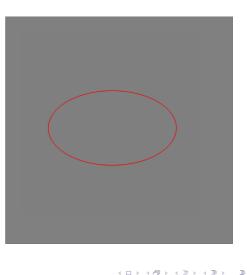
The *hull* Ω is the completion of $X - \mathbb{R}^d$.



Toy examples of Delone dynamical systems

If $X = \mathbb{Z}$, then:

- X k = X for all $k \in \mathbb{Z}$.
- $\Omega = \mathbb{R}/\mathbb{Z}$.

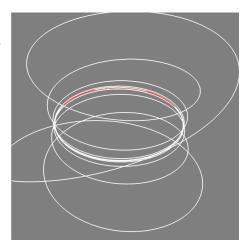


(CMM, U. de Chile)

憲

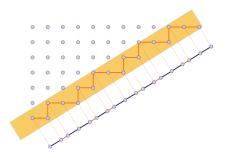
Toy examples of Delone dynamical systems

- If $X = \mathbb{Z}$, then:
 - X k = X for all $k \in \mathbb{Z}$.
 - $\Omega = \mathbb{R}/\mathbb{Z}.$
- If $X = \mathbb{Z} \setminus \{0\}$, then:
 - \mathbb{Z} belongs to Ω .
 - Ω has two path components.
 - $X \mathbb{R}$ (in white).
 - $\mathbb{Z} \mathbb{R}$ (in red).



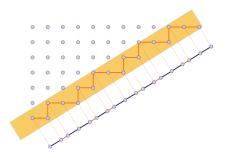
靈

Fibonacci: Model example in d = 1



If 0 is a vertex of a tiling Y in Ω , then Y can be coded.

Fibonacci: Model example in d = 1



If 0 is a vertex of a tiling Y in Ω , then Y can be coded.

Dynamical systems over the Hull

Let X be an aperiodic repetitive Delone set. There is a natural dynamical system over the hull Ω :

- The translation action $\mathcal{T}:\Omega\times\mathbb{R}\to\Omega$ defined by

$$T_t(Y)=Y-t,$$

< ロ ト < 同 ト < 三 ト < 三 ト

靍

Dynamical systems over the Hull

Let X be an aperiodic repetitive Delone set. There is a natural dynamical system over the hull Ω :

• The translation action $\mathcal{T}:\Omega\times\mathbb{R}\to\Omega$ defined by

$$T_t(Y)=Y-t,$$

- this action is continuous,
- moreover, (Ω, T) is minimal (since X is repetitive),
- and it gives much information about the structure of X.

The Canonical transversal

Let X be an aperiodic repetitive Delone set and (Ω, T) be its dynamical system: The canonical transversal is defined by

$$\Omega_0 = \{ Y \in \Omega \mid 0 \in Y \}.$$

Theorem

- Ω₀ is a Cantor set.
- *T*-orbits are path-connected components.
- Ω is locally homeomorphic to the product of a Cantor set by \mathbb{R}^d
- Actually (Ω, T) is a laminated space where the leaves have a flat structure.

Introduction

Derived tilings versus box decompositions

Box decompositions:

- A box in Ω is a set $B = C[D] := \{Y t \mid Y \in C, t \in D\}$ s.t.
 - C is a "local transversal".
 - $D \subset \mathbb{R}^d$ is open.
 - *B* is homeomorphic to $C \times D$.
- A box decomposition
 B = {B₁,..., B_n} s.t. pairwise
 disjoings and their closures
 cover Ω.

Locally derived tilings:

 A tiling T is locally derived from a Delone set X if it can be obtained from X by local rules.

Lemma

There is a correspondence between tilings that are locally derivable from X and box decompositions of Ω by the process of unfolding leaves of Ω .

What the heck Does this mean?

Introduction

Derived tilings versus box decompositions

Box decompositions:

- A box in Ω is a set $B = C[D] := \{Y t \mid Y \in C, t \in D\}$ s.t.
 - C is a "local transversal".
 - $D \subset \mathbb{R}^d$ is open.
 - *B* is homeomorphic to $C \times D$.
- A box decomposition
 B = {B₁,..., B_n} s.t. pairwise
 disjoings and their closures
 cover Ω.

Locally derived tilings:

 A tiling T is locally derived from a Delone set X if it can be obtained from X by local rules.

Lemma

There is a correspondence between tilings that are locally derivable from X and box decompositions of Ω by the process of unfolding leaves of Ω .

What the heck Does this mean?

Tower systems

A tower system can be described:

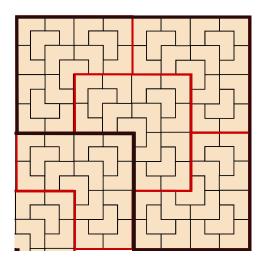
As a sequence \mathcal{B}_n of box decompositions such tht B_{n+1} is zoomed out of B_n . (What is zooming out?) As a sequence of tilings \mathcal{T}_n such that

- \mathcal{T}_0 is locally derivable from X.
- \mathcal{T}_{n+1} is locally derivable from \mathcal{T}_n .
- Each tile of \mathcal{T}_{n+1} is a pattern of \mathcal{T}_n .

Image: A marked and A marked

靍

Example: Substitution tilings



(CMM, U. de Chile)

3

・ロト ・日下・ ・ ヨト・

米取品

590

Main result

Theorem (A.-P., Coronel)

Let X be an aperiodic linearly repetitive Delone set with constant L > 1and $0 \in X$. Given $K \ge 6L(L+1)^2$ and $s_0 > 0$, set $s_n = K^n s_0$ for all $n \in \mathbb{N}$ and let $C_n := C_{X,s_n}$ for all $n \in \mathbb{N}$. Then, there exists a tower system of Ω adapted to $(C_n)_{n \in \mathbb{N}}$ that satisfies the following additional properties:

(i) there exist constants $0 < K_1 = K_1(L, K) < 1 < K_2 := K_2(L, K)$ such that for every $n \in \mathbb{N}$ we have

$$K_1 s_n \leq r_{int}(\mathcal{B}_n) < R_{ext}(\mathcal{B}_n) \leq K_2 s_n;$$
(4.1)

(ii) for every $n \in \mathbb{N}^*$, the matrix M_n has strictly positive coefficients; (iii) the matrices $\{M_n\}_{n \in \mathbb{N}^*}$ are uniformly bounded in size and norm.

Remark

Constructive proof. Compare with other results, like Lenz-Stollman 2005.

Applications

Theorem (Lagarias and Pleasants)

Linearly repetitive Delone systems are uniquely ergodic. Moreover, the rate of convergence for frequencies can be estimated.

Theorem (Coronel 2010, Sadun-Frank 2010+)

Linearly repetitive Delone systems are not strongly mixing.

Theorem (Coronel 2010)

The characterization of eigenvalues for minimal cantor systems can be generalized to linearly repetitive Delone systems.

dynaper 20 / 22

< □ ト < 同 ト < 三 ト <

Thanks!!!!!!

(CMM, U. de Chile)

Tower systems for Linearly Repetitive Delone

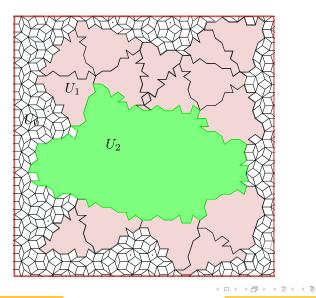
E dynaper 21 / 22

< □ > < □ > < □ > < □ > < □ > < □ >

業際

590

A picture



(CMM, U. de Chile)

E dynaper 22 / 22

米取論

590