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Motivation

Let X be an aperiodic (general) repetitive Delone set (or tiling) and let
(
,T ) be its associated tiling dynamical system: We want to understand
the dynamical properties of the translation action T :

� Eigenvalues?
� Ergodic/Mixing properties?

The idea of this talk is to introduce a technique, that allows to understand
these kind of problems, and hopefully others.
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Minimal Cantor systems

� A minimal Cantor system (X ,T ) is a pair s.t.:
� X is a Cantor set.
� T : X → X is a minimal homeomorphism, i.e., every orbit is dense.
� Fix µ an T -invariant probability measure.

� λ in S1 is an eigenvalue of (X ,T ) if there exists f ∈ L2(X ,S1) such
that

f (Tx) = λf (x)

for all x ∈ X .
� λ is a continuous eigenvalue if f can be chosen continuous.

Question
How about studying the eigenvalues of (X ,T )?

(CMM, U. de Chile) Tower systems for Linearly Repetitive Delone sets dynaper 3 / 22



Introduction Basic Definitions Tower systems for Delone systems Tower systems for Delone dynamical systems

Kakutani-Rokhlin (KR) partitions

� A Rokhlin tower is a pairwise disjoint family T of measurable sets of
the form

T = {T jC}h−1
j=0 ,

� Define floor, height, stages and give basic example.
� A Kakutani-Rokhlin partition P of X is a partition by Rohlin towers,

i.e.,
P = {T jCi | i ∈ {1, . . . , n}, j ∈ {0, . . . , hi}},

� Define base.
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Constructing KR partitions

Lemma (Host-Putnam-Skau?)
Let (X ,T ) be a minimal Cantor set. If C is any clopen-open subset of X,
then there exists a KR partition P with base C.

Proof.
1 R : C → N defined by

R(x) = inf{k > 0 | T k(x) ∈ C}

is continuous.
2 Hence, R(C) = {h1, . . . , hk} for some k ∈ N.
3 Thus, setting Ci := R−1(hi) we get a KR partition

{T jCi : i ∈ {1, . . . , k}, j ∈ {0, . . . , hi − 1}}
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Tower systems for minimal Cantor systems
A Kakutani-Rokhlin tower system for (X ,T ) is a sequence (Pn)n∈N of
Kakutani-Rokhlin partitions such that:

� Pn+1 refines Pn for all n ∈ N.
� The base of Pn+1 is included in the base of Pn.
� Other technical conditions ...

Theorem (Host-Putnam-Skau?)
Every minimal Cantor system (X ,T ) admits a Kakutani-Rokhlin tower
system.

Pn = {T jBi(n) | i ∈ {1, . . . , k(n)}, j ∈ {0, . . . , hi(n)}},

Proof.
Apply Lemma to a decreasing sequence (Cn)n∈N of clopen subsets of X
with diam(Cn)→ 0 as n→∞.
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Characterization of Eigenvalues for minimal Cantor systems

Let (X ,T ) be a minimal Cantor system and (Pk)k be a KR tower system.
There exist “transition matrices” M(n) such that

Ml ,k(n) = ]{0 ≤ j < hl(n) | T jBl(n) ⊆ Bk(n − 1)}.

Theorem (Cortez,Durand,Host, Maass, Bressaud)
Suppose that the matrices M(n) are uniformly bounded (in size and
norm). Let λ = exp(2πα), where α ∈ R. Then:

� (X ,T ) is uniquely ergodic.
� (X ,T , µ) is not strongly mixing.
� λ is an eigenvalue if and only if

∑
n≥0 maxk |λhk(n) − 1|2 < +∞.

� λ is a continuous eigenvalue if and only if∑
n≥0 maxk |λhk(n) − 1| < +∞.
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Motivation II

Let X be an aperiodic (general) repetitive Delone set (or tiling) and let
(
,T ) be its associated tiling dynamical system: We want to understand
the dynamical properties of the translation action T :

Question
Which of these results still hold for tilings and delone sets?

Question
What’s the relation between minimal Cantor sets and Tilings and Delone
sets.
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Delone sets

A subset X of the Euclidean space
R

d is Delone if
� it is uniformly discrete,
� and relatively dense.
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Delone sets

A subset X of the Euclidean space
R

d is Delone if
� it is uniformly discrete,

There exists r > 0 s.t.
every ball of radius r
contains at most one
point of X .

� and relatively dense.
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Repetitive Delone sets
Let X be a Delone set. Given S > 0 and x ∈ X , the S-pattern around x is
defined as

X ∧ B(x ,S) := (X ∩ B(x ,S),B(x ,S)).

� We say that X is repetitive if for
every S > 0 there exists M > 0
such that each ball of radius M
contains a translated copy of
every S-patch of X .

� The repetitivity function MX (S)
is the smallest such M.

� X is linearly repetitive if there
exists L > 1 such that
MX (S) ≤ LS.
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Delone dynamical systems

Let X be a repetitive Delone set.
� Given t ∈ Rd define

TtX := X−t = {x−t : x ∈ X}.

� X is aperiodic if TtX 6= X for
all t ∈ Rd .

� The T -orbit of X is

X − Rd = {X − t : t ∈ Rd}.

� dist(X − t,X − s) < ε if

X ∩ BR(t) ≡ X ∩ BR(s + x),

where ‖x‖ < ε and R > 1/ε.

Definition
The hull 
 is the completion of
X − Rd .
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Toy examples of Delone dynamical systems

If X = Z, then:
� X − k = X for all k ∈ Z.
� 
 = R/Z.
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Toy examples of Delone dynamical systems

If X = Z, then:
� X − k = X for all k ∈ Z.
� 
 = R/Z.

If X = Z \ {0}, then:
� Z belongs to 
.
� 
 has two path

components.
� X − R (in white).
� Z− R (in red).
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Fibonacci: Model example in d = 1

If 0 is a vertex of a tiling Y in 
,
then Y can be coded.

Example

is coded by ...baabaab.abaabab...

Figure: A picture of the Hull
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Dynamical systems over the Hull

Let X be an aperiodic repetitive Delone set. There is a natural dynamical
system over the hull 
:

� The translation action T : 
× R→ 
 defined by

Tt(Y ) = Y − t,
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Dynamical systems over the Hull

Let X be an aperiodic repetitive Delone set. There is a natural dynamical
system over the hull 
:

� The translation action T : 
× R→ 
 defined by

Tt(Y ) = Y − t,

� this action is continuous,
� moreover, (
,T ) is minimal (since X is repetitive),
� and it gives much information about the structure of X .
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The Canonical transversal

Let X be an aperiodic repetitive Delone set and (
,T ) be its dynamical
system: The canonical transversal is defined by


0 = {Y ∈ 
 | 0 ∈ Y }.

Theorem
� 
0 is a Cantor set.
� T -orbits are path-connected components.
� 
 is locally homeomorphic to the product of a Cantor set by Rd

� Actually (
,T ) is a laminated space where the leaves have a flat
structure.
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Derived tilings versus box decompositions

Box decompositions:
� A box in 
 is a set B = C [D] :=
{Y − t | Y ∈ C , t ∈ D} s.t.

� C is a “local transversal”.
� D ⊂ Rd is open.
� B is homeomorphic to C × D.

� A box decomposition
B = {B1, . . . ,Bn} s.t. pairwise
disjoings and their closures
cover 
.

Locally derived tilings:
� A tiling T is locally derived from

a Delone set X if it can be
obtained from X by local rules.

Lemma
There is a correspondence between tilings that are locally derivable from X
and box decompositions of 
 by the process of unfolding leaves of 
.

What the heck Does this mean?
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Tower systems

A tower system can be described:
As a sequence Bn of box
decompositions such tht Bn+1 is
zoomed out of Bn. (What is
zooming out?)

As a sequence of tilings Tn such that
� T0 is locally derivable from X .
� Tn+1 is locally derivable from Tn.
� Each tile of Tn+1 is a pattern of
Tn.
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Example: Substitution tilings
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Main result

Theorem (A.-P., Coronel)
Let X be an aperiodic linearly repetitive Delone set with constant L > 1
and 0 ∈ X. Given K ≥ 6L(L + 1)2 and s0 > 0, set sn = K ns0 for all n ∈ N
and let Cn := CX ,sn for all n ∈ N. Then, there exists a tower system of 

adapted to (Cn)n∈N that satisfies the following additional properties:

(i) there exist constants 0 < K1 = K1(L,K ) < 1 < K2 := K2(L,K ) such
that for every n ∈ N we have

K1sn ≤ rint(Bn) < Rext(Bn) ≤ K2sn; (4.1)

(ii) for every n ∈ N∗, the matrix Mn has strictly positive coefficients;
(iii) the matrices {Mn}n∈N∗ are uniformly bounded in size and norm.

Remark
Constructive proof. Compare with other results, like Lenz-Stollman 2005.
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Applications

Theorem (Lagarias and Pleasants)
Linearly repetitive Delone systems are uniquely ergodic. Moreover, the rate
of convergence for frequencies can be estimated.

Theorem (Coronel 2010, Sadun-Frank 2010+)
Linearly repetitive Delone systems are not strongly mixing.

Theorem (Coronel 2010)
The characterization of eigenvalues for minimal cantor systems can be
generalized to linearly repetitive Delone systems.
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The end

Thanks!!!!!!
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A picture
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