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Cellular automata are discrete dynamical systems de�ned by a local rule, introduced in the 40s by John
von Neumann [15]. They model a large variety of discrete systems and are linked with various areas of
mathematics or computer science, in particular computation theory, complex systems, ergodic theory and
combinatorics.

One of the main catalysts of the study of cellular automata was their surprisingly complex and organised
behaviours, even when iterated on con�gurations with no particular structure (e.g. chosen at random). To
formalise these observations, many authors tried to describe their asymptotic behaviour by considering the
limit set, which is the set of con�gurations that can be reached after arbitrarily many steps. These sets were
shown to have potentially high computational complexity [13, 1], and any nontrivial property on them is
undecidable [11]. These observations built a bridge between the variety of dynamical behaviours and the
computational content of the model. Nevertheless, the problem of characterising which subshifts can be limit
sets of CA remains open.

In 2000, K·rka and Maass argued that limit sets did not provide a good description of empirical ob-
servations and introduced instead a measure-theoretical version of these sets [12]. The idea of µ-limit sets
is to choose the initial con�guration at random, according to some probability measure µ, to iterate the
cellular automaton on this con�guration and to consider all patterns whose probability to appear does not
tend to 0. In the one-dimensional case, this approach yielded similar results of high complexity and unde-
cidability [4, 3, 6, 2]. Althought these two families of results appear similar and both require sophisticated
constructions inside cellular automata, they provide insight about di�erent kinds of dynamics (topological
vs. measure-theoretical) and computational power (deterministic vs. probabilistic).

In [5], H. and Sablik extended this approach to consider the limit probability measure(s). Still in the
one-dimensional case, they provided a computational characterisation of the limit measures reachable by
cellular automata, generalising the previous results.

This article is an extended version of [7]. In op.cit, we aimed at extending the previous results to the two-
dimensional setting. More precisely, we characterised all subshifts that can be µ-limit sets of CA when µ is
the uniform Bernoulli measure. The proof works by an explicit construction inspired by the one-dimensional
constructions of [2, 5], althought the higher dimensional setting has many speci�c challenges. In the present
article, this two-dimensional construction is generalised to d-dimensional space for any d > 2; furthermore,
through a more careful analysis, we are able to characterise reachable limit measures, which is a more general
result. As a corollary, we obtain an undecidability result on properties of limit measures, and cover as well
Cesàro mean convergence and the case where the limit measure is not unique.
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1 De�nitions

1.1 Symbols, con�gurations and cellular automata

Let A be a �nite set of symbols called alphabet. For d > 0, let AZd

be the space of d-dimensional con�gura-
tions.

On Zd, we de�ne the basis vectors ei = (δi(k))0≤k≤d (Kronecker deltas), that is, the vector worth 0 on
all coordinates except the i-th where it is worth 1. Denote Unit(d) = {∑1≤j≤d δjej 6= 0 : ∀j, δj ∈ {−1, 0, 1}}
and Hyp(d) the set of hyperplanes that have a normal vector in Unit(d); these hyperplanes have a basis of
d− 1 vectors in Unit(d).

We will use the ∞ and 1-distance between points of Zd:

∀z1, z2 ∈ Zd, d∞(x, y) = max
1≤i≤d

|xi − yi| and d1(x, y) =
∑

1≤i≤d

|xi − yi|.

An ∞-path (respectively 1-path) between two points of Zd, is a sequence of points z1, . . . , zk such that
d∞(zi, zi+1) = 1 for any i (d1 respectively). An ∞-connected set (resp. 1-connected) is a subset of Zd such
that any pair of points are connected by an ∞-path (resp. 1-path).

If we endow AZd

with the product topology of the discrete topology on A, then AZd

is compact, perfect
and totally disconnected. This topology is also metrisable, for example using the Cantor metric:

∀x, y ∈ AZd

, dC(x, y) = 2−δx,y where δx,y = min{||i||∞ : xi 6= yi}.

For a subset U ⊂ Zd, denote xU ∈ AU the restriction of x to U . Denote A∗ =
⋃
U⊂Zd

finite

AU the set of �nite

patterns. For a pattern w ∈ AU , denote its support supp(w) = U , and its dimension is the smallest d such
that supp(w) ⊂ Zd. We say a pattern is cubic, respectively rectangular, if its support is a d− cube, resp. a
d− box (Cartésian product of intervals).

The cylinder de�ned by a pattern u ∈ A∗ and a position i ∈ Zd is [u]i = {x ∈ AZd

: xi+supp(u) = u}.
For simplicity we sometimes write [u] for [u](0,...,0).

Given two patterns u ∈ AU and v ∈ AV , the frequency of u in v is de�ned as:

freq(u, v) =
{i ∈ V : i+ U ⊂ V, vi+U = u}

{i ∈ V : i+ U ⊂ V } if de�ned, 0 otherwise

The shift map, or shift, is de�ned as:

∀i ∈ Zd, σi(x) = (xi+j)j∈Zd .

A subshift is a closed subset of AZd

invariant under all shifts. Given a cubic pattern u ∈ A[0,n−1]d , de�ne
the periodic con�guration ∞u∞ by ∞u∞[0,n−1]d = u and σnek(∞u∞) =∞ u∞ for every k ∈ [1, d].

A cellular automaton (or CA) is a continuous function F : AZd → AZd

that commutes with all shifts
(F ◦ σek = σek ◦ F for every k). By the Curtis-Hedlund-Lyndon theorem [8], it can be de�ned equivalently
as a function F (x) = (f((xj)j∈i+N))i∈Zd where N ⊂ Zd is a �nite set called neighbourhood and f : AN → A
is called a local rule.

1.2 Probability measures on AZd

Let B be the Borel sigma-algebra of AZd

and M(AZd

) the set of probability measures on AZd

de�ned on

the sigma-algebra B. In this article, we focus on Mσ(AZd

) the set of σ-invariant probability measures on

AZd

, that is to say, the measures µ such that µ(σ−1k (B)) = µ(B) for all B ∈ B and k ∈ Zd. Cylinders
corresponding to �nite patterns form a base of the topology, and furthermore µ([u]i) = µ([u]) for a measure
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µ ∈ Mσ(AZd

). Therefore µ is entirely characterised by {µ([u]) : u ∈ A∗}; actually, considering only cubic
patterns is enough.

We endow Mσ(AZd

) with the weak∗ (or weak convergence) topology: a sequence (µn)n∈N in Mσ(AZd

)

converges to µ ∈ Mσ(AZd

) if and only if, for all patterns u ∈ A∗, one has limn→∞ µn([u]) = µ([u]). In the

weak∗ topology,Mσ(AZd

) is compact and metrisable. A metric is de�ned by

dM(µ, ν) =
∑
n∈N

1

2n
max

u∈A[0,n]d
|µ([u])− ν([u])|.

De�ne the ball centered on µ ∈Mσ(AZd

) of radius ε > 0 as

B(µ, ε) =
{
ν ∈Mσ(AZd

) : dM(µ, ν) ≤ ε
}
.

Let us de�ne some examples that we use throughout the article.
The Bernoulli measure µλ associated to some vector λ = (λa) ∈ [0; 1]A satisfying

∑
a∈A λa = 1 is de�ned

by
µλ([u0 . . . un]) = λu0 · · ·λun for all u0 . . . un ∈ A∗.

The Dirac measure supported by x ∈ AZd

is de�ned as δx(A) = 1x∈A. Generally δx is not σ-invariant.

However, for any cubic pattern w ∈ A[0,n]d , it is possible to de�ne the σ-invariant measure supported by
∞w∞ by taking the mean of the Dirac measures on the orbit under σ:

δ̂w =
1

| suppw|
∑

i∈[0,n]d
δσi(∞w∞).

The set of measures
{
δ̂w : w ∈ A∗

}
is dense inMσ(AZd

) [14].

1.2.1 Action of a cellular automaton on Mσ(AZd

) and limit measure

Let F : AZd → AZd

be a cellular automaton and µ ∈ Mσ(AZd

). De�ne the image measure F∗µ by
F∗µ(A) = µ(F−1(A)) for all A ∈ B. Since F is σ-invariant, that is to say F ◦ σ = σ ◦ F , one deduces that
F∗(Mσ(AZd

)) ⊂Mσ(AZd

). This de�nes a continuous application F∗ :Mσ(AZd

)→Mσ(AZd

).

We consider in particular F t∗µ the iterated image of µ by F∗. Since Mσ(AZd

) is compact in the weak∗
topology, the sequence (F t∗µ)t∈N admits a set of limit points denoted V(F, µ) and called the µ-limit set of
measures of F . When V(F, µ) is a singleton, i.e. when F t∗µ −→

n→∞
ν, we say ν is the limit measure of F

starting on µ.

2 Computability

We now introduce the computability notions that are needed to state our main results. This exposition is
very similar to the one that can be found in [10], which was later expanded in [9], for the one-dimensional
case. Indeed, most of the de�nitions and proofs only rely on the fact that the space is metric and separable,
properties for which the increase in dimension is irrelevant. Therefore, we omit the proofs that can be

obtained by a straightforward substitution (AZ → AZd

) from the proofs found in op.cit.

2.1 Turing machines

Turing machines are a standard and robust tool to de�ne the computability of mathematical operations. In
the usual model, they have access to a one-dimensional, one- or two-sided in�nite memory tape. In order
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to simplify some constructions, we consider in this article that the tape is d-dimensional and in�nite in all
directions. This does not a�ect the computing power of the model.

A Turing machine TM = (Q,Γ,#, q0, δ, QF ) is de�ned by:

• Γ a �nite alphabet, with a blank symbol # /∈ Γ. Initially, a d-dimensional in�nite memory tape is �lled
with #, except for a �nite region (the input), and a computing head is located at coordinate (0, . . . , 0);

• Q a �nite set of states, with an initial state q0 ∈ Q;

• δ : (Q ∪#)× Γ→ (Q ∪#)× Γ× {±ei}1≤i≤d the transition function. Given the current state and the
letter it reads on the tape � which depends on its current position � the function returns the new
state, the letter to be written on the tape at current position, and the vector by which the head moves.

• QF ⊂ Q the set of �nal states � when a �nal state is reached, the computation stops and the output
is the contents of the tape.

A function f : A∗ → A∗ is computable if there exists a Turing machine working on an alphabet Γ ⊃ A that,
on any input w ∈ A∗, eventually stops and outputs f(w).

2.2 Computability of functions mapping countable sets

To generalise this de�nition to functions mapping arbitrary countable sets X → Y , we need to de�ne an
encoding, that is, an alphabet AX together with a bijection between X and some subset of A∗X , and similarly
for Y . Then the computability of a function X → Y is de�ned up to some encoding. However, in practice,
reasonable encodings yield the same notion of computability. To simplify notations, we �x some canonical
encodings for the rest of the paper :

Z (or N): Take AZ = {0, 1} and encode an element k ∈ Z as its binary expansion surrounded by blank
symbols.

Product X × Y : Take AX×Y = AX ×AY and encode (x, y) as the product of encodings for x and y.

Using this last case, we de�ne a canonical encoding for Q as the canonical encoding for N × Z, up to the
bijection p

q 7→ (p, q) (with p, q irreducible).
Furthermore, we de�ne the computability of a set K ⊂ X as the computability of the function 1K : X →

N.

2.3 Computability of probability measures

As we mentioned above, a probability measure µ ∈ Mσ(AZd

) is entirely described by the value of µ([u])

for u ∈ A∗. In other words, an element of Mσ(AZd

) is described by a function A∗ → R. Since R is not
countable, the standard ways to de�ne notions of computability is to consider approximations by elements
of Q.

A measure µ ∈Mσ(AZd

) is computable if there exists a computable function f : A∗ × N→ Q such that

|µ([u])− f(u, n)| < 2−n for all u ∈ A∗ and n ∈ N.

It is limit-computable if there exists a computable function f : A∗ × N→ Q such that

|µ([u])− f(u, n)| −→
n→∞

0 for all u ∈ A∗.

Additionally we de�ne the notion of a uniformly computable sequence. Infomally, it means that a sequence
of objects can be computed by a single algorithm which, given n ∈ N as input, returns a description of a
n-th object of the sequence.
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Formally, a sequence of measures (µi)i∈N is uniformly computable i� there exists f : A∗ × N × N → Q
computable such that:

|µi([u])− f(u, n, i)| < 2−n for all u ∈ A∗ and n, i ∈ N2.

It is easy to see that the limit of a uniformly computable sequence of measures is limit-computable (it is not
necessarily computable since the rate of convergence of µi to µ is not known).

Proposition 1 (Approximation by measures supported by periodic orbits).
These notions can be de�ned in another equivalent way:

(i) A measure µ ∈ Mσ(AZd

) is computable if and only if there exists a computable function f : N → A∗
such that dM

(
µ, δ̂f(n)

)
≤ 2−n for all n ∈ N.

(ii) A measure µ ∈Mσ(AZd

) is limit-computable if and only if there exists a computable function f : N→
A∗ such that lim

n→∞
δ̂f(n) = µ.

Notice the parallel with the de�nition of a computability of a real: in both cases, an object is computable
if it is approximated by a uniformly computable sequence of elements taken from a dense subset (Q and the
measures supported by periodic orbits, respectively) with a known rate of convergence.

2.4 Action of a cellular automaton on computable measures

Proposition 2 (First computability obstruction). Let F : AZd → AZd

be a cellular automaton and µ ∈
Mσ(AZd

) be a computable measure. Then (F t∗µ)t∈N is a uniformly computable sequence of measures. In
particular, if F t∗µ −→

t→∞
ν then ν is limit-computable.

In general, F t∗µ does not have a single limit point, but a compact set of accumulation points. To obtain
a similar obstruction, we extend our computability de�nitions to those objects.

2.5 Compact sets in computable analysis

Extending naively the de�nition for countable sets using the characteristic function does not work since the
set of inputs would not be countable. Instead, we use a general de�nition for metric spaces that possess a

countable dense subset, (δ̂w)w∈A∗ in the case ofMσ(AZd

).

A closed set K ⊂Mσ(AZd

) is computable if the countable set
{

(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅
}
is

computable, that is, if its characteristic function is.
However, the set of limit points of the sequence (F t∗µ)t∈N, where µ is computable, is not necessarily com-

putable (or even limit-computable). We need to extend our de�nitions even further, obtaining an arithmetical

hierarchy. We introduce these notions �rst on countable spaces, then on closed subsets ofMσ(AZd

).
Let X,Y be two countable sets, with Y being ordered. A sequence of functions (fi : X → Y )i∈N is

uniformly computable if (i, x) 7→ fi(x) is computable.
A function f : X → Y is Π2-computable (resp. Σ2-computable) if f = infi∈N supj∈N fi,j (resp. f =

supi∈N infj∈N fi,j), where (fi,j)(i,j)∈N2 is a uniformly computable sequence of functions.

A closed set K ⊂Mσ(AZd

) is Π2-computable if the set{
(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅

}
is Π2-computable, that is, its characteristic function is.

Remark. The symmetric notions of Π2- and Σ2-computability come from an analogy with the real arith-
metic hierarchy [16, 17]. These de�nitions extend naturally to Πn- and Σn-computability. Other equivalent
de�nitions exists, see for example [10] for Π2-computability or [9] for a more general result.
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Figure 1: Representation of the arithmetical hierarchy. Arrows indicate strict inclusion relations.

Proposition 3 (Second computability obstruction).

Let F : AZd → AZd

be a cellular automaton and µ be a computable measure. Then V(F, µ) is a nonempty
Π2-computable compact set.

Reciprocally, Π2-computable compact sets can be all be described as the set of limit points of a uniformly
computable sequence of measures (wn)n∈N. However, our construction cannot do better that following such a

sequence along a polygonal path, that it, along segments of the form
[
δ̂wi , δ̂wi+1

]
=
{
tδ̂u + (1− t)δ̂v : t ∈ [0, 1]

}
.

The following proposition shows that this corresponds to connected limit sets of measures.

Proposition 4 (Technical characterisation of Π2-CCC sets).

Let K ⊂ Mσ(AZd

) be a non-empty Π2-computable, compact, connected set (Π2-CCC for short). Then
there exists a uniformly computable sequence of cubic patterns (wn)n∈N such that K is the limit of the
polygonal path de�ned by (wn)n∈N, that is,

K =
⋂
N>0

⋃
n≥N

[
δ̂wn

, δ̂wn+1

]
.

3 Construction

In order to obtain the results announced in introduction, in conjunction to Proposition 4, we need the
following result.

Theorem 1. For any uniformly computable sequence (wn)n∈N of cubic patterns of B∗ of dimension at most

d, there exists a larger alphabet A ⊃ B and a cellular automaton F : AZd → AZd

such that:

V(F, µ) =
⋂
N>0

⋃
n≥N

[
δ̂wn , δ̂wn+1

]
.

In this section, we present the construction of the alphabet A and cellular automaton F , given some
alphabet B and some uniformly computable sequence (wn)n∈N of patterns of B∗.

3.1 Sketch of the construction

We detail the construction of A and F by describing the tasks to be performed on the initial con�guration.
Each letter of A is a product of seven layers separated in three groups, each group representing some
information needed to perform a given task. The alphabet of each layer contains a special blank symbol #
to denote the absence of information.

• The �rst group is dedicated to the colonising of the con�guration. Since we have no control over the
contents of the initial con�guration, we want to erase (almost) all letters present initially in favor of
various processes that we can control and synchronize. To do this, the birth layer contains a seed
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symbol * that can only appear in the initial con�guration. Each seed gives birth to a stationnary
heart r on the same layer, and to a membrane on the growth layer which grows in every direction. As
it grows, the membrane erases everything in its path, except for other membranes issued from a seed
with which it merges.

• The second group is used to divide the colonised space into mostly independant areas called organisms,
each organism having at its center a heart issued from a seed. The borders between organisms are
rede�ned regularly by processes on the organism layer. Furthermore, organisms need to grow in size
regularly, which is achieved by merging organisms whose hearts get too close using the evolution layer.

• The third group deals with the internal metabolism of the organisms. The goal is �rst to compute each
wn in succession, which is achieved by simulating a Turing machine in the computing layer ; then, the
main layer (de�ned below) of the whole body of the organism is �lled with concatenated copies of the
output by using a copying process taking place on the copying layer. The above is done synchronously,
at some time tn, in all the organisms.

Finally, the main layer is where copies of wn are written, which implies that the corresponding alphabet
is B∪{#}. To sum up, the global alphabet is A = Abirth×Agrowth×Aorga×Aevol×Acomp×Acopy×(B∪{#}).
We check that B ⊂ A up to the bijection b 7→ (#,#,#,#,#,#, b). Denote pbirth, pgrowth, porga, pevol, pcomp,
pcopy, pmain the projections on each coordinate.

During the description of F , we will treat each layer successively. The layers were introduced in order of
dependency, in the sense that the time evolution of symbols in a given layer only depends on the contents of
layers in the same group and the one immediatly preceding it. Furthermore, the main layer is only a�ected
by the writing layer.

3.2 Space colonisation: Seeds and membranes

In this section, we describe the cleaning of the con�guration through the seeds and the birth, growth and
fusion of membranes. We deal only with the birth layer and alphabet Abirth for the moment. Section 3.2.1
gives the general ideas of the process, while Section 3.2.2 focuses on technical di�culties of the cellular
implementation.

3.2.1 Creation myth: a sketch

Birth and growth and membranes This alphabet Abirth contains the seed symbol * , which can only
appear in the initial con�guration since it cannot be produced by the local rule of F . At the �rst step, each
seed spawns a number of processes and turns into a heart r ∈ Abirth. This heart and those processes (and
those spawned from them) are called initialised, which means that their behaviour is well controlled and
synchronised (since they are all born at time 1). All other symbols are uninitialised.

If two seeds are too close from each other (d∞ less than 5), the largest (in lexicographic order) is erased
to give enough space to the other seed to spawn its processes. A seed that is not destroyed at time 1 this
way is called viable. By abuse of notation we write pbirth(cx) = *

V to mean that the con�guration c has a
viable seed at coordinate x.

Each occurence of * triggers the birth at time 1 of a living membrane. The membrane consists in
membrane symbols ‖ that form initially the surface of an hypercube of edge length 5 centred on the seed.
The membrane is oriented, being able to distinguish inside from outside through arrow labels. Furthermore,
to each membrane symbol is associated an age counter, which is a binary counter initialised at 0 and increasing
at each step, whose aim is to keep track of the age of the membrane. Notice that in an initialised membrane
all age counters are equal.

From there on, the membrane grows slowly towards the outside, erasing the content of other layers as it
progresses with the exception of other membranes. This is governed by the respiration process: each time
the age stored in its counter is the square of an integer, the membrane grows to the outside, making one step
in every direction. Again, this supposes that storage, incrementation and decrementation of counters are
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instantaneous, we will remedy this problem in the next section. Figure 2 represents some part of a membrane
with arrows and counters.

1202

1202

1202

1202

1202
1

2

0

2

1

2

0

2

1

2

0

2

1

2

0

2

1

2

0

2

1

2

0

2

Figure 2: A corner of a membrane in dimension 2. The arrows give the orientation and the counters store
the age of the membrane.

Fight for survival When the growing membranes meet other membrane symbols, they try to determine
locally whether they are part of an initialised membrane (in which case the two should merge), or some
uninitialised symbols which should be erased. We call dead an uninitialised group of membrane symbols
that present some locally detectable malformation, such as non-connexity, the absence of or inconsistence
between age counters/respiration processes, inconsistence between inner and outer orientation for neighbors,
etc. In this case, the malformation generates a death signal A that spreads through the whole membrane
erasing it. However, such a group can also form a zombie membrane, that is apparently well-formed though
uninitialised. Initialised (living) and zombie membranes are distinguished through age counters.

Fact 1. At time t, all age counters associated with a well-formed membrane have value at least t − 1, the
minimum being reached only for initialised membranes.

Indeed, age counters of initialised membranes are initialised at 0 at time 1, while age counters of zombie
membranes were already present (with a positive value) at time 0, and both are incremented by 1 at each
step.

3.2.2 Membranes and age counters

This section is dedicated to the details of the cellular implementation of the ideas exposed in the previous
section. First we show how to implement age counters with binary counters using logarithmic space.

As we saw, Abirth contains a blank state # and symbols for seeds * , hearts r , and membranes. Each
membrane symbol ‖ contains an outward orientation label consisting of a vector of Unit(d).

De�nition. A membrane m at time t is a maximal 1-connected set of coordinates containing membrane
symbols ‖ at time t with consistent outward orientation; i.e., orientation of neighbouring membrane symbols
di�er in at most one coordinate, and at most by 1.

When a membrane forms a closed curve (which is the case for initialised membranes), we denote Supp(m)
its support of m. In this case, Supp(m) partitions Zd into a �nite set Int(m) and an in�nite set Ext(m)
which are ∞-connected. We also denote Int(m) = Int(m) \ Supp(m). By "outward" in the previous
de�nition, we mean that the orientation vectors of m are directed towards Ext(m). Notice this cannot be
checked locally, but any locally detectable malformation spawns a death process.

To implement all counters, we use a redundant binary basis:
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t phase A B age breath 5 + 2b
√
tc

1 + 1 0 0 5
2 − 0 1 1 5
3 − 1 0 2 5
4 + 2 0 11 × 7
5 + 11 1 12 7
6 − 0 2 21 7
7 − 1 11 102 7
8 − 2 0 111 7
9 + 11 0 112 × 9
10 + 10 1 121 9

Figure 3: Values of the three counters for t ≤ 10.

De�nition (Redundant binary basis). Let c = cn−1 . . . c0 ∈ {0, 1, 2, 1}n be a counter whose most signi�cant

bit is marked. The value of c is
∑n−1
i=0 ci2

i (reverse order) where 1 has value −1. Since 2 = 10, 2 can be
seen as a 0 with a carry, and 1 as a 0 with a "negative" carry.

At each time step, carries are propagated along the counter, which can be done in a local manner
(02 → 10, 12 → 20,#2 → 10). If the counter is incremented by one, which is the case for age counters, the
rule is adapted at the least signi�cant bit at the end of the counter (0→ 1, 1→ 2, 2→ 1). Decrementation
through negative carries is done in a symmetric manner (11→ 01, 01→ 11) except that we erase additional
zeroes at the beginning of the counter (11→ #1).

The age counters are implemented in this way. The least signi�cant bit of each counter is next to its
corresponding membrane symbol, and the following bits lie on a line directed towards the inside of the
membrane. To each possible direction (corresponding to some ±ej) corresponds a di�erent sublayer, which
allows counters to cross near the corners. Thus the age counters use 2d sublayers, each sublayer containing
symbols {1, 0, 1, 2}.

Recall that any inconsistency such that the absence of an age counter for some membrane symbols or
parallel counters containing di�erent symbols spawns a death counter, which spreads in the whole membrane
and erases all layers of these cells.

3.2.3 The respiration process

The goal of the respiration process is to govern a slow growth of the membrane. Along with the age counter,
on two other sublayers ofAbirth, to counters A and B are initialised at time 0 with values 1 and 0, respectively.
From there on two phases alternate, the current phase being labelled on the membrane symbol:

Phase + A is decremented while B is incremented, until A reaches 0. The phase passes to −;

Phase − A is incremented while B is decremented, until B reaches 0. On the next step A is incremented
once more while a breath is triggered (explained below), then the phase passes to +.

A + B is constant on a cycle and a cycle takes a total time 2(A + B) + 1, after which the sum A + B
is incremented by 1. Therefore a breath occurs at each time t2 for t > 1 (the starting time being 1).
Each breath makes the membrane progress by one cell on every direction, from which we can see that the
membrane forms an hypercube of edge length 5+2b

√
tc at time t. Furthermore, the counters of an initialised

membranes are initialised to 0 at time 1, hence the maximum size of the counters is dlog2(t− 1)e at time t.
In Figure 3 we represent the update operation of all three counters, that is, incrementing the age and

updating A and B according to the phase.

Lemma 1. The counter update can be performed locally with radius 2.
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Proof. The incrementations and decrementations described above can be achieved with radius 1. The least
signi�cant bit can be distinguished by being next to the membrane symbol which contains the information
on the current phase and the most signi�cant bit is next to a blank symbol (on its layer).

We show that the fact that a counter is worth 0 is locally detectable (to see this is nontrivial, consider
the update 111 . . . 1→ #00 . . . 0). During a decrementation the least signi�cant bit alterns between 0 and 1.
Since they progress at "speed" one, two negative carries can never be next to each other. Therefore the only
possible representations of 1 are 1 and 11, and both yield 0 at the next step. Therefore detecting when the
counter is worth 0 requires radius two, in order to "see" the 0 and the # state indicating this is the most
signi�cant bit.

In Lemma 2, we quantify the maximal number of extensions of a membrane in a given time.

Lemma 2. The number of breaths triggered for any membrane symbol between times t and t+ k is at most
b
√
t+ kc − b

√
tc.

Proof. Notice this lemma is not restricted to initialised membranes. Apart from time 0 (when a breath
symbol could be present), a breath is only triggered when the B counter of a membrane symbol without
local malformations reaches 0. This symbol must be issued from a seed or from a membrane symbol already
present at time 0. In the �rst case, since a breath is triggered at each step when the time t is the square of
an integer (except for 1), the number of breaths before time t is b

√
tc − 1. The lemma follows.

In the second case, the membrane symbol had at time 0 counters A and B with some positive values
a0 and b0 and some phase ε0, values which correspond to those of an initialised set of counters at some
time t0 > 0. From there on the time evolution of the membrane symbol is similar to the evolution of an
initialised membrane symbol of age t0 + t, which means that the number of breaths between times t and
t+ k is b

√
t+ t0 + kc − b√t+ t0c ≤ b

√
t+ kc − b

√
tc.

Breathing process Now we describe the e�ect of a breath symbol on the membrane. If such a symbol
is not produced synchronously by the whole membrane, then A signals spawn and spread to erase the
membrane.

Recall that each membrane symbol at coordinates x is labelled with an outward growth direction, which
is a vector v =

∑
εjej ∈ Unit. The membrane symbol is the border between Int(m) and Ext(m), with

the orientation vector indicating which part Ext(m) is. If a breath occurs for some symbols but not all, a
death process is triggered. Otherwise, the membrane symbols are removed and new symbols are created on
all cells of Ext(m) that were ∞-adjacent to any membrane symbol of m. The new orientation vectors are
found by remaining coherent with the old orientation.

The remaining task is to reproduce the counters for the new symbols.
First consider the case of a face symbol x and orientation ej . Right after a breath, when a new symbol

is created at coordinate x + ej , the symbol at x is replaced by a placeholder symbol slim. This symbol
progressively shifts the counters of x by one cell in direction ej , marking at each step the limit between the
part which is to be shifted and the part already shifted. The counters keep updating by ignoring this symbol,
which increase the radius to 3. Figure 4 illustrates the shift.

For an initial con�guration c, de�ne Mt(c) be the set of initialised membranes at time t. Then the
colonised space at time t is:

Colt(c) =
⋃

m∈Mt(c)

Int(m).

When a membrane grows, it erases the content of every other layer of the cells it encounters, except when
the birth layer contains the outer border of a membrane. In this case, the comparison process starts, which
is the topic of the next section.

Hence alphabet Abirth contains the seed, the blank state and the states used for membranes. As we will
see in the next section, we actually need to allow 2d di�erent membranes to share the same cell.
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Figure 4: After a breath, a membrane symbol at cell y is erased and new membrane symbols appear at x
and x′. At each step between t + 1 and t + 4, the red cells represent superposition of the age, A and B
counters. They are copied to the new membrane symbols, but the incrementation does not stop.
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3.2.4 Forming colonies

As membranes grow and tend to cover the whole space, di�erent membranes eventually meet. The result
of the encounter should depend on the nature of the membranes: two initialised membranes should merge
while an initialised membrane should erase an uninitialised membrane (what happens between uninitialised
membrane is irrelevant). In this section, we devise a comparison process to distinguish initialised from
uninitialised membranes. We now consider the growth layer and its alphabet Agrowth.

The process aims at comparing the value of the age counters to let the younger membrane survive, with
merging occuring in case of equality (see Lemma 1.

When we say that two membranes m and m′ meet at time t in cells x and x′, we mean that there exists
1 ≤ j ≤ d such that:

• either x ∈ Supp(m) ∩ Supp(m′), x+ ej ∈ Ext(m) and x− ej ∈ Ext(m′), in which case take x′ = x;

• or x ∈ Supp(m) ∩Ext(m′) and x+ ej ∈ Supp(m′) ∩Ext(m), in which case take x′ = x+ ej .

The two possible situations are illustrated in Figure 5.

x x′

m1 m2

x

m1 m2

Figure 5: Depending on the parity of the distance between membranes, they will meet either when they
share some border cells (x′ = x), or when the borders are adjacent(x′ = x+ ej).

In particular, the membranes arriving from opposite directions, they have (at least) an age counter in
opposite directions, say ej and −ej . The idea is now to copy these age counters on the growth layer and
compare them. At positions x and x′, two symbols C1

j and C1
−j are written on the growth layer to trigger

the process (if x = x′, a symbol C1
±j represents the superposition of those symbols).

At the next step, both symbols begin to progress at speed one in the corresponding direction, copying
at each step one bit from the age counter. Carries 2 are copied as 0: indeed, the copy is performed at the
same speed as the carry progresses, so the carry will be taken into account one it meets a 0 to turn into a 1
(otherwise it would be copied at each step). More generally, only carries that appeared before the beginning
of the copy can in�uence the copied bits. Thus we see that the copied counter (that is not incremented)
have the same value as the age counter at the beginning of the copy. When it reaches the end of its counter,
each copy symbol turns into a comparison symbol C2

j (resp. C2
−j ), which triggers the comparison phase.

In the comparison phase, the comparison symbols return towards the meeting point, "pushing" in front
of them the copied bits in a catterpillar-like movement, starting from the most signi�cant bit. The returning
bits use a third sub-layer. The process is represented in Figure 6.

As the returning bits reach the meeting point, one of the following situations occur:

• the most signi�cant bit from one side arrives earlier than the most signi�cant bit from the other side.
In this case the age counter of the corresponding side is shorter, which means that the membrane of
this side is younger;

• both most signi�cant bits arrive simultaneously at the meeting points x and x′. Then bits are compared
as they arrive. The �rst bit that is smaller than its counterpart corresponds to the side of the younger
membrane;
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shead,j− shead,j+

shead,j− shead,j+

shead,j− shead,j+

shead,j− shead,j+

shead,j− shead,j+

shead,j− shead,j+

shead,j− shead,j+

scopy,j− scopy,j+

scopy,j− scopy,j+

scopy,j− scopy,j+

scomp,j− scomp,j+

scomp,j− scomp,j+

scomp,j− scomp,j+

scomp,j− scomp,j+
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α

α
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α

α
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b

β

β
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β

c
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b
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γ

γ

γ

β

α

t

t + 1

t + 2

t + 3

t + 4

t + 5

t + 6

x′xej

Figure 6: In this example, two membranes meet in cells x and x′ at time t. Their age counters are respectively
abc and αβγ of same length 3. Only the growth layer is represented. At the end (t + 6), the decision can
be made in both x and x′. In this particular case, the symbols shead have not been moved, which means
neither of the membranes did extend during the comparison.
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• in the previous case, if all bits are equal until the end, both membranes are exactly as old.

Those three possibilities are tested locally at the meeting point and the result is written at the meeting
point under the form of a symbol (on its own sublayer) marking the direction of the younger membrane,
with = in case of a tie. If for some reason a A process reaches the symbol of one of the sides, the comparison
stops and the surviving membrane is marked as younger "by default".

If a membrane is declared younger, all auxiliary symbols used for comparison are erased and a death
process triggers in the older membrane. The younger membrane will resume its growth naturally at the next
breath. If the result is a tie, both membrane symbols are erased along with all associated auxiliary states:
the membrane are merged.

Remark.

• By Lemma 1, initialised membranes are always youngest, and only tie with other initialised membranes.

• Two membranes may meet with more than one meeting point. In that case, comparisons are performed
simultaneously at every point and in every concerned direction. In the case of a tie, all symbols
participating in the meeting should be erased simultaneously; any local discrepancy results in the
spawn of a death process.

• In the worst case 2d di�erent membranes can meet in the same cell x (corners of hypercube arriving
from all possible directions). To solve this problem, we duplicate each sublayer (in Abirth and Agrowth)
used in the comparison into 2d copies, each copy being able to perform a comparison independently
of the others. If the membrane is older than at least another membrane, a death process is spawned;
similarly for the tie case.

• Let ` be the length of the shortest age counter. The previous process needs ` steps to copy this age
counter on the growth layer, and 2` steps to send them one by one to the meeting point. Regardless
of the length of the other counter, the comparison reaches a result after the last bit of the shortest
counter arrives. Therefore the whole process takes at most 2` steps, with ` = dlog t− 1e if one of the
membranes is initialised (where t is the time at the beginning of the process).

A possibility we did not take into account is that one of the membranes breaths (grows) during the
comparison. For each meeting of a pair of membranes, call instigating membrane the one whose breath has
triggered the meeting (possibly both if they moved simultaneously; this is the case for initialised membranes).

Lemma 3. Let m be a living membrane meeting another membrane at time t. During the comparison
process, m may breath at most one time if it is not instigating, and cannot breath at all if m is instigating.

Proof. Using the above remark, we know that the comparison process takes at most k = 3dlog t− 1e steps.
Using Lemma 2, the number of breaths of m between times t− 1 and t+ k is at most:⌊√

t+ k
⌋
−
⌊√

t− 1
⌋
≤
⌈√

t+ k −
√
t− 1

⌉
≤
⌈

k

2
√
t− 1

⌉
(since the derivative of

√
t− 1 is decreasing)

≤
⌈

3 log t− 1

2
√
t− 1

⌉
≤ 1.

If m is instigating, then by de�nition m breathed at time t − 1 and cannot breath again before time t + k.
Otherwise, m breathes at most one time.

Therefore, if during the comparison, one or both membranes move, due to the respiration process pre-
sented earlier, it is enough to give the information of the extension to the head shead,j+ written on the
second layer. Indeed, as we juste proved in Lemma 3, there cannot be more than one extension during a
comparison involving a living membrane. Therefore, if a membrane extends more than twice before the end
of the comparison, the A state is written in this membrane. As the radius of F is 2, the border of the
membrane has always immediate access to the result of the comparison.
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Lemma 4. Take any t > 0 and initial con�guration c ∈ AZd

. Then:

Colt(c) = {x ∈ Zd : ∃y ∈ Zd, d∞(x, y) ≤ 1 +
√
t, pbirth(cy) = *

V }.

In other words, the colonised space at time t is exactly the set of cells that, at time a, are at distance less
than 1 +

√
t from a viable seed.

Proof. We prove this result by structural induction. If t = 1, then the colonised space is the set of all
initialised membranes which are hypercubes of length 5 around each viable seed, and the result is proved.

Now suppose that the hypothesis holds at time t. Notice than Colt(c) ⊂ Colt+1(c), and that merging
does not add any cell to the colonised space: an initialised membrane cannot be erased, and the colony
obtained after merging two membranes is the union of the colonies de�ned by the two merged membranes.
Only the breathing process may add new cells to the colonised space.

Consequently, the induction step is empty if (t + 1) is not a square since Colt(c) = Colt+1(c) and
d∞(x, y) ≤ 1+

√
t⇔ d∞(x, y) ≤ 1+

√
t+ 1 (distances are integers). If (t+1) is a square, then all membrane

symbols in initialised membranes take a breath and extend by one cell towards the outside. Now, take a
cell y at distance 1 +

√
t+ 1 from the nearest viable seed. By the induction hypothesis, y /∈ Colt(c), but y

has a neighbour y + v with v ∈ Unit at distance 1 +
√
t for that seed, so that y + v ∈ Colt(c). Therefore

y + v must be a membrane symbol in the support of an initialised membrane that breathes at time t + 1,
and therefore y ∈ Colt+1(c). Conversely, if a cell z is at distance greater than 1 +

√
t+ 1 from the nearest

viable seed, it cannot have a membrane symbol belonging to an initialised membrane as a neighbour, so that
z /∈ Colt+1(c).

3.3 Colonies: evolution of the population

Thanks to Lemma 4, we only have to consider initialised membranes and colonies. In this section, we describe
the interaction of organisms inside colonies. In all the following, we assume we are inside a colony, and the
support of the surrounding membrane acts as an impassable wall for any symbols in the second group layers:
the organism and evolution layers.

3.3.1 Hearts and organisms

This section describes the organism layer, and every state presented here belongs to Aorga.
As we saw before, seeds * at time 1 spawn a membrane and turn into hearts r . Each heart will be the

center of an organism which is itself a subset of the colony. At �rst each colony have only one heart, but as
initialised membranes merge together, the colonies become multi-hearted, and the colony space should be
partitioned into organisms (except possibly a negligible part). For various reasons, the size of the organisms
should grow in a controlled way, which requires some hearts to be progressively removed.

In the present section, we present the cycle of division of colony space and life of the organisms.
The life of an organism consists in a succession of generations. We introduce a sequence of times (tn)n≥1

(to be �xed later), marking the limit between the n− 1-th and nth generation. Time is tracked by the heart
through a binary time counter, initialised at 1 at time 1 (along with the heart) and remaining stationnary
next to the heart. Details on the implementation and the way to determine when t = tn will be given in
Section 3.4.1.

At time tn, organism-building signals spread from every heart, progressing as membrane symbols but
with speed 1 (although they do not have any counters). While progressing, they erase the old contents
of the second and third group layers (but not the main layer). When they meet a membrane or another
organism-building signal, they vanish leaving behind a neutral border symbol $ . For reasons of parity, if
two signals emitted by hearts in x and x′ arrive simultaneously in two neighbor cells y and y′, they receive
a pseudo border symbol $′ that contains an orientation towards the interior of the corresponding organism,
that is the opposite of the direction of the organism-building signal. Just as membrane symbols, 3d − 1
di�erent organism-building symbols and pseudo border symbols are required (one for each orientation).
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The territory of a heart is the largest set of 1-connected cells containing the heart and no neutral border
symbol $ nor pseudo border symbol pointing towards another organism, that is the set of cells reached �rst
by organism-building signals emitted by this heart. At time tn + k (assuming tn + k < tn+1), the only cells
of the colony that are not part of some organism are either at distance more than k from the nearest heart,
or were outside the membrane at time tn (and a breath had included them since).

Fact 2. Let x be a cell containing a heart at time t with tn ≤ t ≤ tn+1, and let y be a cell in its territory.
Then the organism-building signal emitted by x reached y at time tn+d∞(x, y) and no other organism-building
signal reached a neighbor of y before that time.

The following lemma gives insight about the shape of the territories, namely, that they are a (discrete)
star domain, whether you include the borders or not.

Lemma 5. If a cell y belongs to the territory of a heart in cell x, then each cell y′ such that d∞(x, y′) +
d∞(y′, y) = d∞(x, y) is also in this territory. Furthermore, y′ can be a border only if y is a border.

Proof. For the �rst part of the lemma, suppose such a y′ is not in the territory of x. We can build an∞-path
between y′ and y consisting of cells (y(i))0≤i≤K such that d∞(x, z) + d∞(z, y) = d∞(x, y). Take y(j) the �rst
y(i) that belongs to the territory of x.

Denote T = tn + d∞(x, y(j−1)) the time when the organism-building signal emitted by x should have
reached y(j−1) in the absence of any other heart. Since y(j−1) is not in the territory of x, there must exist
another heart x′ that emitted an organism-building signal that arrived in y(j−1) before time T (recall that
the pseudo-borders are considered as parts of organisms).

Since y(j) is adjacent to y(j−1), y(j) is reached by some signal before time T + 1. But the signal from
x cannot reach y(j) before time tn + d∞(x, y(j)) = T + 1. Therefore y(j) is not in the territory of x, a
contradiction.

For the second case, notice that y′ is a border if and only if both signals reached this cell simultaneously.
Then the same reasoning along the path (y(i))0≤i≤K shows that these cells cannot be inside the territory of
x.

3.3.2 Natural selection

In this section we consider the evolution layer and the alphabet Aevol.
To have enough computation space and ensure that the auxiliary symbols are in negligible density, the

minimal size of the organisms should grow regularly. More precisely, we require that the territory of any
organism during the n-th generation contains at least a hypercube of side 2n+ 1 centred at its heart. If two
hearts are at distance less than 2n+ 1, they are said to be in con�ict. In this section, we devise a selection
process to detect this fact and to erase one of them.

In order to detect con�icting organisms, we draw a body, that is a hypercube of side 2n+ 1, around each
heart. Two hearts are in con�ict exactly when their bodies intersect. To draw the body of an organism, we
use the current value of n that is kept under the form of a binary counter on the computation layer (see next
section). At time tn, (this is detected by the computation layer), the heart builds an hypercube of side length
3 consisting of body-building symbols. Then the heart sends n − 1 successive impulses (hypercube-shaped
signals) that progress at speed 1 in every direction and push the body-building signals outward. The count
is kept through a decrementing binary counter, as usual.

Whenever two hearts con�ict, a death process triggers for the one in the smallest cell (in lexicographic
order). In this case, a death symbol spreads through the entire body cells (not the inside), erasing the
selection layer. When this process reaches a body corner symbol (de�ned as in Section 3.2.2, but for body
symbols), the corner sends a heartbreak signal at speed 1 in the direction opposite to its orientation (this is
a unique feature of corner symbols). The heart, after receiving d heartbreak symbols (the current number
being kept track of on a dedicated �xed-length binary counter), self-destroys. Not being able to send border-
building signals, its territory will be occupied by other organisms at the next phase.

Thanks to this process we can bound the radius of an organism, which is the largest distance from a cell
of its territory to its heart.
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Lemma 6. For any constant K > 1, denoting Kn = Knd− 1
2 ,

max
tn≤t≤tn+1

µ
({
c ∈ AZd

: ∃x ∈ Zd, d1(x, 0) ≤ Kn, porga(F t(c)x) = r
})
→n→∞ 1.

Proof. We can assume 0 is in colonised space. Since the shape of organisms only change at times tn, it is
enough to show that the sets:

ΓDn =
{
c ∈ AZd

: ∃x ∈ Zd, d1(x, 0) ≤ D, porga(F tn(c)x) = r
}

are such that µ(ΓKn
n ) tend to 1 as n tends to in�nity.

Take any n > 0. At time tn, only hearts that are at distance 2n or 2n+1 of another heart are potentially

destroyed. For c ∈ AZd

and z ∈ Zd, we de�ne the n-heart chain in c starting from z inductively:

• z0 = z assuming that F tn−1(c)z = r (otherwise the chain is empty);

• Assuming zn is de�ned for some n > 0,

� if there exist coordinates z′ > zn such that d∞(zn, z
′) ∈ {2n, 2n+ 1} and F tn−1(c)z′ = r , de�ne

zn+1 as the maximal such z′;

� otherwise, zn+1 is unde�ned and the chain stops.

Lemma 7. For k and L < D positive integers such that D − L > 2k + 1,

µ
(
c /∈ ΓDk | c ∈ ΓD−Lk−1

)
≤
[
1−

(
1− µ

(
[ *

V ]
))d(2k+1)d−1

] L
2k+1

.

Proof of Lemma 7. If c ∈ ΓD−Lk , there exists z ∈ Zd such that d(0, z) < D − L and F tk−1(c)z = r ; denote
mk−1(c) one such z minimising the distance d(0, z) and (zki (c)) the k-heart chain in c starting from mk−1(c).
Notice that 0 cannot be part of this chain.

For any i, the heart at zki (c) (if de�ned) is destroyed at time tk if, and only if, zki+1(c) is de�ned.
Furthermore by straightforward induction we have d∞(zki (c), 0) ≤ D + (2k + 1)i. Consequently, to get
c /∈ ΓDk , the chain must contain at least L

2k+1 elements.
For any i,

µ
(
zki+1(c) is de�ned | zki (c) is de�ned

)
= µ

(
∃z′ > zki (c), d∞(zki (c), z′) ∈ {2n, 2n+ 1} ∧ F tk−1(c)z′ = r

)
≤ µ

(
∃z′ > zki (c), d∞(zki (c), z′) ∈ {2n, 2n+ 1} ∧ cz′ = *

V
)

≤ 1− (1− µ([ *
V ]))d(2k+1)d−1

In the second step, we used the fact that a heart can only exist if a viable seed was present at this
coordinate at time 0. The third step comes from the fact that the measure is Bernoulli and that the
considered coordinates form the (two-cell thick) surface area of a half-hypercube of edge length 2k + 1.

To conclude, we apply this computation inductively, using the fact that at each step of the chain, the
coordinates considered in the computation were never considered in a previous step. Together with the
fact that µ is a Bernoulli measure, we obtain that the events {zki+1(c) is de�ned | zki (c) is de�ned } are
independant.

We come back to the proof of Lemma 6. Take some c /∈ ΓKn
n . By the pidgeonhole principle, one of the

following is true:

• c /∈ Γ
Kn/n
0 , or

• ∃i < n, c ∈ Γ
iKn/n
i and c /∈ Γ

(i+1)Kn/n
i+1 .

17



By Birkho�'s theorem, since µ([ * ]V ) > 0, µ(c /∈ Γ
Kn/n
0 ) −→

n→∞
0. Using Lemma 7, we obtain:

µ
(
c /∈ ΓKn

n

)
≤
∑
i<n

[
1−

(
1− µ

(
[ *

V ]
))d(2i+1)d−1

] Kn
n(2i+1)

+ o(1)

≤ n ·
[
1− (1− µ([ *

V ]))d(2n+1)d−1
] Kn

n(2n+1)

+ o(1)

and since Kn ∼ Knd− 1
2 , we can see that logµ

(
c /∈ ΓKn

n

)
≤ log n+ 1

n2K
nd− 1

2 (1− µ([ *
V ]))d(2n+1)d−1 → −∞,

from which we deduce that µ
(
c /∈ ΓKn

n

)
→ 0.

The same method can be used to show that, around any heart and with asymptotic probability 1, other

hearts can be found at distance at most Knd− 1
2 in each quadrant (sets of the form {x ∈ Zd : ∀i, εixi > 0}

for some εi = ±1). This is enough to show that, with a probability tending to 1, the central cell belongs to
an organism whose radius is less than Kn.

De�nition. An organism is healthy is its radius is less than Kn = Knd− 1
2 .

3.4 Individual organisms: internal metabolism

The last group of layers is used to govern the internal metabolism of the organisms. In this section, we
consider some organism and describe how it behaves during a generation.

3.4.1 Computing

In this section, we use symbols of the alphabet Acomp in the computational layer. Let (wn)n be the uniformly
computable sequence of patterns given as an hypothesis of the theorem. Our goal is to delimit a small
computation space around the heart where each wn will be computed in succession.

We use standard techniques to embed the time evolution of any Turing machine TM = (Q,Γ,#, q0, δ, QF )
inside our cellular automaton. We use for this the alphabet (Γ ∪#) × (Q ∪#): the left part contains the
tape symbol, and the right part contains the current state for the cell where the head is located, and #
everywhere else. Then each step of the Turing machine moves the head and modi�es the tape around the
head according to local information, which can be done through the local rule of a CA.

In our case, the alphabet Acomp is divided into 3 sublayers, each one simulating in parallel a Turing
machine with a d-dimensional tape. The TM of each sublayer may access to the contents of the tape of
another sublayer when indicated. Let us assume we are at time t = tn, that the �rst TM has the current
value of t as a binary time counter on its tape, and the second one the current value of n (generation counter).
We describe the behaviour of the each machine:

1. The �rst machine increment t at each step to keep the time value updated. This is similar to the
binary age counters, but we will see that the time counter is folded in a square, which makes this task
less trivial.

2. The second machine computes the value of tn+1 (not modifying the generation counter), then keep
watch on the time counter on the �rst tape. When the time counter reaches tn+1, the machine
increments the generation counter by one, which triggers many other processes.

3. The third machine reads the value of n on the second tape, then computes the cubic pattern wn along
with its side length k.
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We want to ensure that these computations can be performed between times tn and tn+1 and without

leaving the hypercube centred on the heart of side length 2

⌈
n

d− 1
4

d + 1

⌉
, that is, that they can be performed

in time tn+1 − tn = Knd− 1
4 and space (2n)d−

1
4 .

By hypothesis, the patterns wn are assumed cubic. Without loss of generality, we also assume that

wn ∈ A[0,k]d for some 1
2n

d− 1
2

d < k ≤ n
d− 1

2
d (by concatenating copies of wn if necessary), and that they

are computable in time O(Knd− 1
4 ) and space O(nd−

1
4 ). This is done by repeating each pattern wn in the

sequence until the next pattern satis�es those constraints. Furthermore the time counter occupies a space

dlog te ≤ dlog tn+1e ∼ log(Knd− 1
4 ) = O(nd−

1
4 ), and computing the value of tn+1 =

∑
k<nK

kd−
1
4 takes the

same space and time O(Knd− 1
4 ).

To get rid of the multiplicative constant contained in the O notation, we use the standard techniques of
linear speedup and tape compression for Turing machines. For any �xed constant C, by grouping cubes Cd

tapes cells together in a single letter and performing C computation steps at once, we can divide required
time and space by C. Of course the tape alphabet of the Turing machines increases exponentially (ic C).

Therefore the described computations are doable within these time and space constraints. wn is computed
before time tn+1, and at time tn+1 the second machine enters a special states that triggers various processes:
organism-building signals, body-building, and the object of the next section, a copying process that will
write concatenated copies of the pattern wn all over the territory of the organism.

The alphabet Acomp is thus (Γ1∪#)× (Q1∪#)× (Γ2∪#)× (Q2∪#)× (Γ3∪#)× (Q3∪#), where Qi,Γi
are the state space and the tape alphabet of (the compressed version of) the i-th Turing machine described
above.

3.4.2 Copying

The second task of an organism is to write concatenated copies of the previously computed pattern on the
whole territory of the organism. In this section, auxiliary symbols belong in the copy layer Acopy but the
pattern is written in the main layer with alphabet B.

Remind that we assume wn ∈ A[0,k]d for some 1
2n

d− 1
2

d < k ≤ n
d− 1

2
d . The global copying process relies on

a cubic grid of side length k that covers the whole territory of the organism. Starting from the cells centred
on the heart, the pattern wn is copied in each cell of this grid passing from neighbour to neighbour, through
a translation of vector kej or −kej for each 1 ≤ j ≤ d.

First denote x the coordinates of the central heart, and assume that the borders of the computed pattern
wn are marked with a special symbol G .

For a set of coordinates i ∈ Zd, de�ne the corresponding grid element Σi = {∑1≤j≤d αjej : ∀1 ≤ j ≤
d, kij ≤ αj ≤ kij + k}, and Σx its border (extremal cells). Notice that the computed pattern is supported
by Σ0,...,0, and Σ0,...,0.

For u ∈ Unit(d) and i ∈ Zd, we de�ne the copying operation Ci(u) that copies the contents of the main
layer from Σi to Σi+u. It consists of simulating a Turing machine (see previous section) accomplishing the
following steps:

Reproducing the borders: The �rst step is to write G in every cell of Σi+u. The Turing machine deter-
mines the value of k by counting the side length of Σi. It then travels to the coordinate k(i+ u) and
builds an hypercube of symbols G of side length k (Σi+u). This takes O(k2) time steps. If the new
hypercube is not entirely included in the territory of the organism, the process stops there.

Reproducing the pattern: The second step is to copy the pattern letter by letter. The machine copies
each letter in lexicographic order, marking with a symbol letters already copied. Each letter needs at
most O(k) steps to be copied, so the whole process takes O(k3) steps.

19



Cleaning the auxiliary states: The third step is to remove all the auxiliary states that remain on the
tape in the original grid hypercube Σi (including G ). This is done by going through all k2 cells of Σi,
taking O(k2) steps.

Selectionning heirs: The hypercube Σi+u will in turn spawn new copy processes. The rule to carry on is
the following:

Ci(u)→
{ {Ci+u(v) : v = ej +

∑
k 6=j λkek, λk ∈ {−1, 0,+1}} if u = ej

Ci+u(u) otherwise

Those new processes are performed in parallel by duplicating the copy layer 2d times.

At the initial step, it is enough to trigger a copy process in all directions u ∈ Unit(d). The copying

operations then progressively �ll the whole organism, as can be seen in Figure 7. To do: Il faudrait changer

w′n en wn. Aussi, peut-etre montrer comment chaque �èche se dédouble ?

r

w′n

w′n

w′n

w′n

w′n

w′n

w′n

w′n

w′n

Figure 7: In this 2-dimensional example, the pattern wn is copied from the heart of the organism towards
its boundaries in successive steps.

Each copying operation takes O(k3) steps, and the active copying operations expand outward from the
heart as a (thick) hypercube. Therefore, if the radius of the organism is r, the total time needed to �nish

the copying process is r
k · O(k3). We can take r ≤ Knd− 1

2 by Lemma 6 and k ≤ n
d− 1

2
d , which gives a total

time of O(n2Knd− 1
2 ) = O(Knd− 1

4 ). Lowering if needed the multiplicative constant by the linear speedup
theorem, we see that the process ends before time tn+1.

3.5 Proof of the main theorem

We �rst prove that the density of auxiliary states tend to 0 as time tends to in�nity, which ensures they are
not charged by any limit measure.

Lemma 8. Borders have negligible density asymptotically, i.e.,

F tµ
({
c ∈ AZd

: porga(c)0 = $
})
→t 0

Proof. By Lemma 4, we can consider only the cells in the colonised space, i.e. inside a living membrane.
Given a con�guration c and some time tn ≤ t < tn+1 during the n-th generation, denote S $ (t) = {x ∈ Zd :
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porga(F t(c)x) = $ } ∩Colt(c) the set of colonised cells containing a border, and S $ (t) the complement of

the previous set. We show that there exists a constant λ such that
|S $ (t)|

|S $ (t)| ≤
λ
n . This property being true

for every initial con�guration c, the lemma follows using Birkho�'s theorem.
The idea is to partition the borders between organisms into (subsets of) hyperplanes. To each such

hyperplane subset bordering two given organisms, we associate some volume inside the territory of one of
the organisms that is large enough (linear in n). Practically, we prove that any planar surface included in
the border is at distance at least n of one of the hearts.

Lemma 9. The common border of two hearts is included in a (�nite) union of hyperplanes of Hyp(d).

Proof. Let x and x′ be two cells containing a heart each. Assuming no other heart existed in the space, the
border between these two hearts would be included in the union of Hε

k,n sets, where Hε
k,n are de�ned as:

y ∈ Hε
k,n ⇐⇒

{
|2yn − xn − x′n| ≤ 1 if k = n and xn = x′n
|yk − xk − ε(yn − x′n)| ≤ 1 otherwise

All these sets are unions of one or two hyperplanes of Hyp(d) (depending on the parity of xk − εx′n). In
the presence of other hearts, the border between x and x′ is a subset of this "ideal border", which proves
the Lemma.

Given two hearts at cells x0 and x1, denote B(x0, x1) the set of cells corresponding to their common
border. Partition this set into a �nite collection {H1, . . . ,Hk} of disjoint subset of hyperplanes according to
the previous fact. For each such Hi, as d1(x0, x1) ≥ 2n, we have either d1(x0, Hi) ≥ n or d1(x1, Hi) ≥ n.
Denote A(s) the area of s and V0 and V1 the volumes of the d-polytopes limited by the surface s and
respectively the points H0 and H1. And Vι = 1

dd1Hι, PA for each ι ∈ {0, 1}. Denote V (s) = V0 + V1, then
A(s)
Vs
≤ d

n .
We now do this operation for every organism, that is split S $ (t) into a collection S of disjoint hyperplanar

surfaces that belong to the common border of two organisms. For every two such di�erent surfaces, the
corresponding volumes inside organisms are also disjoints, hence

|S $ (t)|
|S $ (t)| ≤

∑
S A(s)∑
S V (s)

(1)

≤ d

n
(2)

Lemma 10. ∀z ∈ Zd,
µ
(
F t(c)z ∈ A \ B

)
−→
t→∞

0.

Proof. We handle each layer separately.

Uncolonised space and membranes First, by Lemma 4, we can see that c0 can belong to the uncolonised
space at time t only if the nearest viable seed at time 0 is at distance more than

√
t. For the same reason, c0

can be part of a living membrane or a related process (age counter, respiration process, comparison process)
only if the nearest viable seed is at distance more than

√
t− log t. Since a viable seed appear with a nonzero

probability, the probability of this event tends to 0 as t tends to in�nity.

It remains to handle symbols appearing inside the colonised space on the layers bla. By the ergodic
theorem, it is equivalent to prove that the density of auxiliary states in a con�guration tends to 0 almost
surely when time tends to in�nity.
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Hearts, computing symbols In the colonised space hearts r must be issued from a seed, and as ex-
plained in Section bla they each have at time Tn a body, which are non-overlapping hypercubes of side
2n+ 1 centered on the heart (more precisely, they can overlap shortly but are destroyed before the next Tn).
Thus the density of hearts r in c between times Tn and Tn+1 is almost surely less than 1

(2n−1)d . Since the

computing process taking place around the heart is contained in an hypercube of side
√
n, the density of

cells with nonempty computing layer is almost surely less than 1
(2n−1)d/2 in this period.

Bodies and bodybuilding signals As for the symbols for the body of the heart, they form the surface
of an hypercube of side 2n+ 1 (when it is fully built) or less (during the construction), and therefore there
are less than 2d(2n + 1)d−1 such symbols for each heart. The impulses used to grow the body being sent
one at a time, they occupy at most as much space as the body itself at any given time. Therefore all those
symbols have density less than 2d(2n+ 1)d−1 · 1

(2n−1)d = O
(
1
n

)
.

Borders and border-building signals Borders $ were handled in Lemma 8. We use a similar argument
to show that the density of symbols in signals used to build borders is asymptotically negligible. The signal
is born around the heart and progresses at speed one. Therefore, m steps after its birth, the set of cells in
the organism containing the signal is an hypercube of side 2m + 1 centred on the heart (intersected with
the inside of the organism). In particular, in an organism of healthy size, the signal sent at time tn has

disappears before time tn +Knd ≤ tn+1, so at most one signal appear in a give organism at the same time.
If m ≤ n, since the organism contains at least nd cells, the signal appear with frequency less than

2d(2m+1)d−1

nd = O( 1
n ). If m > n, notice that for each cell z of the organism satisfying d∞(r , z) = m, by

Lemma 5 the entire line between r and z is inside the organism and does not contain the signal (since its
distance to the heart is less than m). Therefore if a certain proportion of the surface area of the hypercube
is inside the organism (and therefore contains symbols), the same proportion of the volume of the hypercube
is inside the organism as well (without symbols), from which we deduce that the symbol density is at most
2d(2m+1)d+1

md = O
(
1
n

)
(since m > n).

Copying processes The copying grid G is simply a grid of side length
√
n, and therefore the density

of symbols G is less than 2d(2n+1)d−1

nd = O
(
1
n

)
. Each copying operation contains symbols in at most two

squares at any given time : one from which it copies and one to which it copies. Furthermore, because all
copying operations take the same amount of time C(n) to copy one square, the whole copying process of an
organism in the time interval [tn + kC(n), tn + (k+ 1)C(n)] is contained in the squares located at "distance"
k and k + 1 from the heart, i.e. the cells whose distance from the heart is between k

√
n and (k + 2)

√
n.

Furthermore, by Lemma 6, the probability that an organism contains only one copying process tends to 1.
The previous argument (used for the border-building signals) shows that copying symbols have density at

most O
(

2
√
n
n

)
= O

(
1√
n

)
.

From this lemma, we see that no limit measure can assign a nonzero probability to any pattern with a
nonempty auxiliary layer.

Lemma 11.

dM(F tnµ, δ̂wn
) −→
n→∞

0 and max
tn≤t≤tn+1

dM

(
F tµ, [δ̂wn

, δ̂wn+1
]
)
−→
n→∞

0.

Proof. Take any �nite square pattern u ∈ A[0,`]d . From Lemma 10 and by σ-invariance, we can see that if
c is drawn according to µ then the probability that F t(c)[0,`]d has any part outside the colonised space or

with a nonempty auxiliary layer is O
(

1√
n

)
. Inside any organism at time t = tn, the main layer contains

concatenated copies of wn−1 in all directions except for those cells at distance more than tn−tn−1

C(n)

√
n from
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the heart (see the last paragraph of the previous proof), which form an asymptotically negligible set by
Lemma 6. By σ-invariance, we obtain that:

|F tnµ([u])− δ̂wn
([u])| −→

n→∞
0.

Since this is true for any square pattern, we get the �rst part of the result.

At time tn, the copying process for wn is triggered. As explained in the last paragraph of the previous
proof, between times tn + kC(n) and tn + (k + 1)C(n) the copying process is contained in cells at distance
k
√
n to (k + 2)

√
n from the nearest heart. In particular, the main layer of cells at distance less than k

√
n

from the nearest heart contain concatenated copies of wn while those at distance more than (k + 2)
√
n still

contain concatenated copies of wn−1.
Therefore, denoting by h(c) the minimum distance between 0 and an heart in c, we have for any tn ≤

t ≤ tn+1:

F tµ([u]) = µ

(
h(c) ≤ t− tn

C(n)

√
n

)
· δ̂wn([u]) + µ

(
h(c) >

t− tn
C(n)

√
n

)
· δ̂wn−1([u]) + o

n→∞
(1).

The second term contains µ
(
h(c) > t−tn

C(n)

√
n
)
instead of the expected µ

(
h(c) >

(
t−tn
C(n) + 2

)√
n
)
to get an

actual barycenter, the di�erence between asymptotically negligible in n. This equation holding for any square
pattern u, we obtain:

dM

(
F tµ , µ

(
h(c) ≤ t− tn

C(n)

√
n

)
· δ̂wn

+ µ

(
h(c) >

t− tn
C(n)

√
n

)
· δ̂wn−1

)
−→
n→∞

0.

The right-hand measure belonging to the segment [δ̂wn−1 , δ̂wn ], and this being true for any tn ≤ t ≤ tn+1,
we obtain the desired result.

Proof (of Theorem 1). The main theorem follows from Lemma 11. The right-hand part proves that V(F, µ)

is included in the closure of the polygonal path delineated by the sequence (δ̂wn)n∈N. To get the other
inclusion, notice that dM

(
F tµ, F t+1µ

)
→ 0. Indeed, using the second part of the previous proof, we have

dM
(
F tµ, F t+1µ

)
≤ 2µ

(
t−tn
C(n) ≤ h(c) ≤ t+1−tn

C(n)

)
+ o
n→∞

(1) = o
n→∞

(1). Therefore any point of the segment[
δ̂wn

, δ̂wn+1

]
has a measure of (F tµ)tn≤t≤tn+1

at distance o
n→∞

(1), which gives the other inclusion.

4 Statement of the results

From Theorem 1 we deduce a number of results which are our main contributions.

Corollary 1. The measures ν ∈Mσ(AZd

) for which there exist:

• an alphabet B ⊃ A,

• a cellular automaton F : BZd → BZd

, and

• a nondegenerate Bernoulli measure µ ∈Mσ(BZd

)

such that F tµ→ ν, are exactly the limit-computable measures.

Corollary 2. The connected sets of measures K ⊂Mσ(AZd

) for which there exist:

• an alphabet B ⊃ A,

• a cellular automaton F : BZd → BZd

, and
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• a nondegenerate Bernoulli measure µ ∈Mσ(BZd

)

such that V(F, µ) = K, are exactly the Π2-computable, connected, compact sets of measures.

Furthermore, both corollaries hold if one requires the convergence to hold for all nondegenerate Bernoulli
measures.

Proof. Apply Theorem 1 to Proposition 4. To get Corollary 1, use the fact that ν is a limit-computable
measure if and only if the singleton {ν} is a Π2-computable set of measures (and of course connected).

Following [5], we obtain a similar characterisation using convergence in Cesàro mean (Corollary 5 in
op.cit) and a Rice-style theorem on µ-limit measures set (Corollary 7 in op.cit). Since the proofs of op.cit.
only involve �nding an appropriate uniformly computable sequence (wn) without modifying the cellular

automaton, they can be carried straightforwardly to the d-dimensional case by replacing AZ by AZd

and we
do not repeat them here.

Corollary 3. The sets of measures K′ ⊂ K ⊂Mσ(AZd

) for which there exist:

• an alphabet B ⊃ A,

• a cellular automaton F : BZd → BZd

, and

• a nondegenerate Bernoulli measure µ ∈Mσ(BZd

)

such that V(F, µ) = K and V ′(F, µ) = K′, are exactly the Π2-computable, connected, compact sets of measures.

In particular we characterise all sets of measures reachable at the limit in convergence in Cesàro mean
from a Bernoulli measure, since those sets are necessarily connected (Section 1.2.3 in op.cit.). Here again,
the result holds if one requires the convergence to hold for all nondegenerate Bernoulli measures.

Corollary 4. Let P be a nontrivial property (i.e. not always or never true) on non-empty Π2-computable,

compact, connected sets ofMσ(AZd

). There is no algorithm that can decide, given an alphabet B, a cellular

automaton F : BZd → BZd

and a Bernoulli measure µ ∈Mσ(BZd

), whether V(F, µ) satis�es P .

Here it is assumed that the Bernoulli measure is �nitely described by a list of (rational) parameters. A
similar statement follows on nontrivial properties of limit-computable measures. This corollary would also
hold if the property was required to hold for all, or for some, nondegenerate Bernoulli measure(s).
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