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Abstract

A Turmit is a Turing machine that works over a two-dimensional grid, that is, an agent
that moves, reads and writes symbols over the cells of the grid. Its state is an arrow and,
depending on the symbol that it reads, it turns to the left or to the right, switching the symbol
at the same time. Several symbols are admitted, and the rule is specified by the turning sense
that the machine has over each symbol. Turmites are a generalization of Langton’s ant, and
they present very complex and diverse behaviors. We prove that any Turmite, except for
those whose rule does not depend on the symbol, can simulate any Turing Machine. We also
prove the P-completeness of prediction their future behavior by explicitly giving a log-space
reduction from the Topological Circuit Value Problem. A similar result was already established
for Langton’s ant; here we use a similar technique but prove a stronger notion of simulation,
and for a more general family.

(Turing-universality, P-completeness, One Head Machines, Unconventional Computation)

Langton’s ant [Lan86] is a Turing machine evolving on a two-dimensional grid where each
vertex contains a white or black symbol. The “ant” is the head of the machine and is in one state
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corresponding to its current direction (N, S, E, O). At each time step, the ant moves one step
forward and turns according to the symbol on the new vertex, changing this symbol.

Despite the simplicity of the rules governing its dynamics, the ant presents extremely complex
trajectories. From a white configuration, the ant initially exhibits a simple, almost symmetric
behavior, but then passes through the path it has drawn in an apparently disordered, chaotic fashion,
before entering in a recurrent behavior that takes it away from the initial position. It remains an
open problem if this periodic asymptotic behavior is the same for any initial configuration with
finitely many black symbols.

Various generalizations of this model have been suggested: several ants [Lan86], other regular
grids or finite grids [GGM01], more than two symbols [GPST95]. Among the latter are the Turmites,
first discussed in [Dew89] and credited to Greg Turk. Here the symbols are taken from Z/nZ and
each one corresponds to turning right (R) or left (L). When the Turmite visits a cell it turns
according to the symbol in the cell and add one to this. These Turmites preserve several properties
of Langton’s ant, such as reversibility and unboundness, but they exhibit much diverse and complex
asymptotic behaviors.

In this paper we prove that, with the exception of two rules with trivial dynamics, all Turmites
can perform universal computation in the sense used in [Coo04] for the Rule 110 cellular automaton:
that is, we prove that given a 1D Turing machine, there exists a periodic configuration of the Turmite
space which can be perturbed by a finite pattern, dependent on any given finite input word, such
that the Turmite simulates the Turing machine over that word.

With a similar technique, we prove that the problem of deciding if a given cell is visited by
the trajectory of the Turmite before some time is P-complete. P-completeness is regularly used
in similar contexts to show that the problem of predicting the future behavior of a system is
intrinsically hard to parallelize (under unproven but widely held assumptions in complexity theory).
An exposition of these concepts can be found in [GHR95]. P-completeness results have be proven
in this way in, for example, the Rule 110 cellular [NW06], two-dimensional cellular automata such
as the Game of Life [DR99] and the original Langton’s ant [GGM01].

The fundamental idea of this proof was introduced by Banks [Ban71] and consists in the simu-
lation of logical circuits. A similar technique was used for two-dimensional cellular automata (see
[GG07] for a review on the subject). Turmites (and Langton’s ant) work in a slightly different way
than these previous examples, because it is the Turmite that needs to go over the cellular space to
perform the computation of each logical gate. In this work, we use the ideas from [GGM01] but
creating very particular gadgets that allow a construction that works for all the Turmites at the
same time. Moreover, the infinite circuit that simulates a Turing machine was modified such that
now it is completely periodic except for a finite number of cells. The proof of P-completeness is done
by reduction from the Topological circuit value problem with a detailed and explicit construction,
that is proved to be computable in logarithmic space.

The formal definition of a Turmite is presented in Section 1. Section 2 is devoted to the definition
of a set of computational devices from which one can simulate any Turing machine. We prove that
these devices can be implemented by any Turmite in Section 3, establishing their universality.
Finally, in Section 4 the proof of P-completeness is developed.
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1 Langton’s ant and Turmites

As defined in [GPST95], a Turmite is an automaton with state set Q = {→, ↑,←, ↓} and alphabet
A = {0, 1, ..., n − 1} = Z/Zn, that moves over the grid Z2. In this setting, a configuration is an

element from AZ2 × Z2 ×Q, that represents:

• an assignment of symbols from A to each cell in Z2,

• a marked cell representing the position of the Turmite, and

• the current state of the Turmite.

At each cell the Turmite turns either to the right or to the left, depending on its rule and the
symbol of the cell where it lands, it augments the symbol by 1 and then it moves one cell forward.
Let us note that the system is invariant under rotations of the configuration and the Turmite state,
but not under reflections.

A particular Turmite rule is characterized by a word w ∈ {L,R}n that assigns to each symbol

a turning direction. Formally, for a given configuration (C, (i, j), d) ∈ AZ2 × Z2 × Q, the global
transition function of the rule w is defined by Tw(C, (i, j), d) = (C ′, (i′, j′), d′), where:

• C ′(k, l) =

{
C(k, l) + 1 mod n if (k, l) = (i, j)
C(k, l) otherwise

,

• d′ is a rotation of d by 90◦ clockwise if wC(i,j) = R, or counterclockwise if wC(i,j) = L,

• (i′, j′) = (i, j) + d′.

An illustration of the dynamics of rule RRL is shown in Figure 1.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5

Figure 1: 2 steps of the Turmite RRL.

The Turmites whose turning direction is independent of the symbol are trivial, since they will
have a 4-periodic behavior independently of the initial configuration. Turmites are a particular
case of a Turing machine over a two-dimensional tape. Non trivial Turmites have two important
properties, proved in [GPST95]: they are reversible, the previous state of each configuration can be
uniquely determined, and their trajectories are always unbounded, no periodic point can appear.

Langton’s ant is the Turmite with rule RL. It was introduced by Christopher Langton in [Lan86]
together with other paradigmatic automata that emulate artificial life. Figure 2a) is the config-
uration obtained at iteration 11,200 when starting from the white configuration. The repetitive
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pattern is produced after iteration 10,100, and it corresponds to a regular movement of period 104,
known as the “highway”. This particular asymptotic behavior has been experimentally observed
over every finite initial configuration, but no one knows whether it will really occur in every case,
which is a long standing open problem. In [GMG02] it was proved that universal computation can
be performed with this ant. Since this is done by drawing a particular infinite initial configuration,
it has no implications on the question about the highway, but it does justify in some sense the
difficulties encountered when studying this system.

(a) Rule RL, iteration 11200 (b) Rule RRL, iteration 786 (c) Rule RRLL, iteration 281498

Figure 2: Turmite simulations: at the beginning all the cells are in state 0.

Other Turmites exhibit much more complex and diverse behaviors. Some of them build highways
like Langton’s ant, but with simpler patterns (as does rule RRL in Figure 2b)), other grow squares
instead, others have bilateral symmetry, etc. [GPST95].

2 Simulating universal computation

We introduce a model of computation consisting in two basic elements, wires and boxes. The wires
are used to transmit signals but can be only used once (see Figure 3a); they can be rotated and
flexed.

The boxes are computational devices with a state (0 or 1) that are connected to five (or three)
wires (see Figure 3b). When a box in state 0 receives a signal from wire 1, it flips from 0 to 1
and the signal exits through wire 2. The input wire 1 can only be used when the box is in state
0. Furthermore, a signal entering from wire 3 will exit through wire 4 if the current state is 0, and
through wire 5 otherwise. The simplest such device is the input box, where the wires 1 and 2 are
left unused (Figure 3c). These devices are represented in Figure 3. They can be rotated but not
reflected, that is, when enumerating the cables clockwise, we will always read 1-2-5-3-4.

Our system is intended to work in a two-dimensional space, which implies the need for a device
to cross wires, and also another to join two wires into one; therefore, we introduce a cross and a
union. The union has two input wires and one output wire; a signal coming from any of the input
wires will exit through the output wire. The cross allows two wires 1 and 2 to cross in such a way
that their signals do not interact. This device works as long as wire 1 is used before wire 2, that
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(a) Wire.

4 5

3

1 2

0

(b) Box in state 0.

4 5

3

s

(c) Input box in state s ∈ {0, 1}.

Figure 3: Diagrams of the wire and the boxes used in the construction of logic gates.
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(a) Union.

1

2

(b) Cross.

Figure 4: Additional elements in the Wires and Boxes system. In the Cross, the wire 1 will be
always distinguished with a semicircle.

p

0

0 1
q

0 1

In Out

(a) NAND gate.

p

0

0 1

In Out

(b) NOT gate.

Figure 5: Examples of logic gates built from wires and boxes.

is, wire 2 can be used only if wire 1 has been used before. Since this device can be rotated and
reflected, wire 1 and 2 can be in any position. Diagrams of these devices are shown in Figure 4b.

From these elements we can build any logical gate, such as, for example, the NAND gate
(p ∼∧q ⇔ ∼ (p ∧ q)) or the NOT gate (∼). Their construction is shown in Figure 5. Notice that
the computation itself is due to the action of the boxes, and the signal coming from the left only
triggers the computation by passing through the different boxes. From case to case analysis we can
check that for any initial values of p and q in the upper boxes, the state of the lower box after the
signal passed through will be NAND(p, q) and NOT (p), respectively. Let us remark that since the
boxes cannot be reflected, these gates cannot be reflected neither. The NAND and the NOT gate
can be only computed by a signal that enters by the left.

In order to perform compositions of logic gates, we should connect them by using the output
(lower) box of a gate as input (upper) box of another gate. However the gates of Figure 5 only
work with a signal going from left to right. To fix this issue, we design a special gate COPY that
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p

0

0 1

InOut

(a) COPY gate.

p

0

0 1

InOut

(b) COPY gate moving a bit of information arbitrarily far.

p

0

0 1

InOut

0 0

(c) COPY gate triplicating a bit of information.

Figure 6: Uses of the COPY gate.

copies the state from one box to another while allowing the signal to travel from right to left. This
gate can be also used to connect gates that are arbitrarily separated, and it can be also used to
duplicate values. All these uses of the COPY gate are illustrated in Figure 6. Like the NAND and
the NOT gate, the COPY gate cannot be reflected, and it can be used only from right to left.

Our last device allows information to cross, and hence is named the CROSS gate. A CROSS
gate can be obtained from a XOR gate (Y), itself obtained by composition of NAND and NOT
gates, as illustrated in Figure 7.

From these constructions we obtain that the boxes and wires system can simulate any logical
circuit. Moreover, with an infinite diagram we can compute infinite logical circuits, layer by layer,
and thus we can simulate the action of a cellular automaton over a finite initial configuration. This,
in turn, allows the simulation of an arbitrary Turing machine.

Theorem 2.1. For any cellular automaton of radius 1
2 with a quiescent state, there exists an

infinite periodic wires and boxes diagram such that for any finite initial configuration it can be
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p q

∼∧

∼ ∼

∼∧ ∼∧

∼∧

∼ ∼

(a) XOR gate built from NOT and NAND gates.

⊻

p q

⊻ ⊻

pq p

(b) CROSS gate built from XOR gates.

Figure 7: Construction of XOR and CROSS gates.

modified in a finite part in such a way that the diagram simulates the cellular automaton on the
given configuration.

Proof. Without loss of generality we can assume that the cellular automaton has 2N states, has
local function f , and that the state 0 with binary representation (0, . . . , 0) is quiescent. In the
simulation, a finite configuration ω0a0a1 . . . an0ω will be represented by a row of the form

ω001 ba0c ba0c00 ba1c ba1c00 . . .00 banc banc100ω

where baic is the binary representation of ai. Thus, each “cell” of the automaton is duplicated and
translated into binary. The pairs of digits in bold will serve a special function: a 1 on the left will
travel to the right, indicating the end of the (growing) finite configuration, and a 1 on the right
will travel to the left, indicating its beginning. Moreover, each row will be duplicated through the
use of a layer of copy gates, where the computation proceeds from right to left. To simulate the
iteration of the cellular automaton we will use a layer of copies of a circuit C, computed from left to
right, whose details we give below. The general structure of the simulating configuration is shown
in Figure 8, where a′i = f(ai−1, ai) and a′′i = f(a′i−1, a

′
i) (except for the first and last, where an

argument is replaced by the quiescent 0).

The purpose of circuit C is to compute the boolean vector function

ϕ(xL
0 , x

L
1 , . . . , x

L
N−1, s0, s1, x

R
0 , x

R
1 , . . . , x

R
N−1) =

{
(s1, f(xL, xR), f(xL, xR), s0), if s1 = 0

(s1, f(0, xR), f(0, xR), 0), if s1 = 1

where the local function f of the automaton has been adapted to the binary representation. As
shown by the constructions in the previous section, such a circuit can always be constructed.

The construction so far would simulate the iteration of the cellular automaton, if we could
compute each infinite row after the other. Since we want the computation to limit itself to the
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C C C C C C

b0c 0 0 b0c b0c 0 1 ba0c ba0c 0 0 ba1c ba1c 0 0 ba2c ba2c 1 0 b0c b0c 0 0 b0c

0 b0c b0c 0 1 ba′0c ba′0c 0 0 ba′1c ba′1c 0 0 ba′2c ba′2c 0 0 ba′3c ba′3c 1 0 b0c b0c 0

0 b0c b0c 0 1 ba′0c ba′0c 0 0 ba′1c ba′1c 0 0 ba′2c ba′2c 0 0 ba′3c ba′3c 1 0 b0c b0c 0

C O P Y

C C C C C C

b0c 0 1 ba′′0c ba′′0c 0 0 ba′′1c ba′′1c 0 0 ba′′2c ba′′2c 0 0 ba′′3c ba′′3c 0 0 ba′′4c ba′′4c 1 0 b0c

b0c 0 1 ba′′0c ba′′0c 0 0 ba′′1c ba′′1c 0 0 ba′′2c ba′′2c 0 0 ba′′3c ba′′3c 0 0 ba′′4c ba′′4c 1 0 b0c
C O P Y

C C C C C C

Figure 8: Simulation of a radius 1/2 cellular automaton with quiescent state, through the use of
boxes and cables. Layers of copy gates alternate with layers computing the local function. The
Turmite starts on the bold arrow.

(increasing) non-quiescent part, we must stop calculating the C circuits at some point and turn
to the copying row, and then stop that too and restart the computation of C at a lower level. In
order to keep the background configuration periodic, this must be achieved by a modification of
the circuits which allows the flow of computation to obey the signals s0 and s1.

First, we modify C by asking that the first and last rows of circuits inside it perform a
NOT on its inputs (resp., its outputs). Thus, the inner workings of C will actually compute
∼ ϕ(∼ xL,∼ s0,∼ s1,∼ xR). This modification allows us to intervene C without having to know
the precise structure of the computation of ϕ itself. The intervention itself is depicted in Figure 9,
and involves the bottom right corner of C, the middle-top part of the C below it, and the copying
gates in between. We know that the bottom right corner of C is a NOT that will write into its
output only if s0 = 1 and s1 = 0. Hence, we reroute the cable after this 1 has been written, and
instead of continuing to the next C, we move downwards and join the copying gates, finishing the
computation of the current row. On the other hand, we modify the gate that copies the value of s1
into the C circuit below: if the value is 1, we interrupt the copying row and move into C, joining the
row of NOTs with which it begins. The function ϕ ignores the left part of its input when s1 = 1,
so that the circuit C is correctly computed in this case, even if the Turmite did not enter through
the input wire of C.

In particular, if we manage to simulate an arbitrary boxes and cables circuit inside a system (in
this case, the trajectory of a Turmite), then we are able to simulate universal computation.

3 Turing-universality of Turmites

In this section we show that any nontrivial Turmite can build through its trajectory all the elements
of the cables and boxes system. The proof is based on the fact that any nontrivial Turmite rule w
has at least two colors r, l such that w(r) = R, w(r ⊕n 1) = L, w(l) = L and w(l ⊕n 1) = R. In all
the following diagrams we will represent r as white, and l as black. Cells that are not represented
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Figure 9: Changes to the NOT and COPY gates around the bottom corners of the C circuit. Three
different instances of C are highlighted in gray. The NOT of the bottom right corner of the first is
modified, as well as the COPY gate below the bottom right corner of the second.

can have an arbitrary color.

Cables. Cables going from left to right correspond to a line of l cells under a line of r cells,
and can be followed by a Turmite initially oriented to the east as shown in Figure 10a. Since the
Turmite rule is invariant by rotation, right-left, up-down and down-up cables can be constructed in
the same way. These cables are connected through a “L” shape with the appropriate corner color,
as shown in Figures 10b and 10c.

(a) Left-to-right cable. (b) Turning to the right. (c) Turning to the left.

Figure 10: Building single-use cables in nontrivial Turmites. The red line represents the Turmite
trajectory.

Boxes. Boxes are built according to Figure 11. The state of the box is defined by the common
color of the two cells in the yellow rectangle (white for 1, black for 0).

A signal entering by 1 follows the red line and exits by 2 after modifying the state of the box,
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as expected (corresponding to Figure 3b). A signal entering through 3 follows the green line and
exits through 4 or 5 depending on the state of the box.

1 2

3

4 5

Figure 11: The Box. The internal state is recorded in the yellow rectangle, which is initially black
(0). It can be modified by the upper input cable (red). The result is “read” from bellow, by the
lower cable (green).

Cross and union. Finally, the Cross and Union are built as indicated in Figures 12a, 12b and 12c.
All of these Figures can be rotated but not reflected, since reflection changes the turning senses.
This is not a limitation in the case of Cables and Unions, nor in the case of the Box, which is only
needed in the way that it was designed, but we do need the Cross in a reflected form, which is why
we include its two versions. From these constructions we finally obtain our main result.

(a) The union. The Turmite can
enter by the left or the right, and
in both cases will exit by the up-
per cable.

1

2

(b) The cross A. The Turmite
can pass from the upper left cor-
ner to the lower right corner and
afterwards it can pass from the
lower left corner to the upper
right corner.

1
2

(c) The cross B. The Turmite
can pass from the upper left cor-
ner to the lower right corner and
afterwards it can pass from the
the upper right corner to the
lower left corner.

Figure 12: Building cable union and crossover with nontrivial Turmites.

Theorem 3.1. Any nontrivial Turmite can simulate the Cables and Boxes system, and therefore
any 1D Turing machine and cellular automaton over finite initial configurations.
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4 P-completeness

The complexity class P is the class of decision problems that can be solved in polynomial time. It
contains the class NC of decision problems that can be solved by a circuit of polynomial size and
polylogarithmic depth; intuitively, NC corresponds to problems that can be efficiently parallelized.
It is believed that NC 6= P. A problem A is P-complete if every problem in P reduces to A through
an algorithm that uses logarithmic space. If NC 6= P, then a P-complete problem cannot be in
NC.

Predicting the behavior of a computable system - given an initial state and a time t, predict the
state or some property of the system after t steps - can be done by simple simulation in time O(t).
In particular, the problem is in P if we see t as the size of the input - i.e. t is written in unary
and the initial state is described using O(t) bits. If the prediction of a system is P-complete, the
system is seen as unpredictable in the sense that this naive algorithm is optimal; in other words,
there is no “shortcut” to simulate the system, even using massively parallel computation.

In this section we consider a particular prediction problem. The VISIT(w) problem for a fixed
Turmite rule w is defined as follows:

VISIT(w). Given a finite initial configuration x, a cell (X,Y ) ∈ Z2 and a time t ∈ N, decide
whether starting from x the Turmite with rule w passes by the cell (X,Y ) before time t.

We show the P-completeness of this problem. The proof proceeds by reduction from the Topo-
logically Ordered Circuit Value problem (TCV), which is P-complete (see for example [GHR95]).
This proof is inspired by hints given in [GHR95] and by the proof of P-completeness of Planar
Circuit Value problem (PCV) [Gol77] through reduction to the Circuit Value problem (CV).

A logic circuit is a labeled directed acyclic graph (V,E,G), where the vertices are labeled by
{AND,OR,NOT, I}, and only one node has out degree 0: the output node. Moreover, vertices
with labels in {AND,OR} have in-degree 2 and vertices with label NOT have in-degree 1. The
input nodes are those with label I, and have in-degree 0. In such a graph, when boolean values are
assigned to the input nodes, the value of other nodes can be computed, in particular the value of
the output node is the value of the circuit.

A logic circuit (V,E,G) is said to be topologically ordered if vertices are represented by numbers
in such a way that for every (u, v) ∈ E it holds that u < v.

TCV. Given a topologically ordered logic circuit L = (V,E,G) and a binary input b; decide
whether the value of the circuit L on b is 0 or 1.

We put special care into proving that the reduction is in fact log-space. First let us define
formally the input encoding of each problem. For VISIT(w), we use the following encoding.

(x1, y1, c1)(x2, y2, c2)...(xm, ym, cm)#(x0, y0)#d#(X,Y )#t

Where every cell of the initial configuration is 0 except for the cells (xi, yi) ∈ Z2 which have color
ci, the initial Turmite position is (x0, y0), and its initial direction is d, the potentially visited cell is
(X,Y ) and t is the time bound, all coded in binary. As per the usual convention in P-completeness
proofs in similar systems, we consider time complexity with respect to t.
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Given this input, VISIT(w) is clearly decidable in a time polynomial in t: build a 2t×2t central
square of the initial configuration, simulate the first t steps of the trajectory of the Turmite and
check whether the cell (X,Y ) was visited. This requires O(t2) operations.

For TCV, the topologically ordered logic circuit is encoded as follows.

(1, g1, l1, r1)(2, g2, l2, r2)...(n, gn, ln, rn)#(i1, v1)(i2, v2)...(ik, vk)

where gi is the gate type of vertex i and li, ri are the left and right input vertices of gate i if any.
The pair (ij , vj) represents an input vertex ij with its input value vj . The vertex n is assumed to
be the output gate. Using this encoding, the input length of a circuit is O(n log(n)).

Proposition 4.1. VISIT(w) is P-complete for every non trivial Turmite rule w.

Proof. Given a topologically ordered logic circuit with gates {g1, ..., gn}, we first build an equivalent
circuit whose elements are positioned in a n×n grid. For each 1 ≤ i ≤ n, a gate gi (built using the
boxes and wires system seen in Section 2) is placed at coordinate (i, i) in the lattice. Each gate has
two vertical cables bringing its left and right input from above, and one horizontal cable carrying
its output towards the right. If an input is not used, the cable is left unconnected.

At each coordinate (k, i) with k < i, the cable carrying the output of gk and the two cables
carrying the input of gi meet. We distinguish three cases:

1. If li = k then the horizontal cable is connected to the first vertical cable and crosses the
second vertical cable;

2. Symmetrically if ri = k;

3. Otherwise, the horizontal cable crosses both vertical cables.

Note that, since the original circuit is topologically ordered, all cable unions take place in
the upper right half of the grid. Therefore we can omit sending cables to the left of the gates.
Furthermore, we can “activate” each gate in numerical order, since each gate’s input only depends
on the output of gates with a lower number. This consideration will prove useful considering the
sequential nature of the computation in the Turmite’s trajectory.

These crosses and connections are performed using the devices shown in Figure 14, one device
for each possible case. Notice that an horizontal cable that is connected to a vertical cable also
continues towards the right.

Furthermore, since the Turmite travels from left to right, we have to perform a “carriage return”
when the Turmite reaches the end of a line to bring it to the beginning of the next line, for which
we use the COPY gates. The time needed to travel through the circuit is at most t = n2T , where
T is the maximal time to travel through one of the devices. In order to guarantee that the Turmit
will not visit the output cell after exiting the circuit, a wire of length t is added at the end of the
circuit.

Example. Figure 13 shows an example of this construction for a small circuit. The values of the
input gate included while drawing the input gate.
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x1 x2

g3 g4

g5

(a) Original circuit.

x1

x2

g3

g4

g5

(b) Resulting circuit.

x1

x2

g3

g4

g5

(c) Removing unused cables.

Figure 13: Example of a conversion of an given circuit to a circuit embedded in a grid.

The output of the circuit is computed by the configuration shown in Figure 15, where the Turmit
trajectory is represented by a red line.

To complete the proof of TCV ≤NC VISIT(w), we show that the reduction can be performed
in logarithmic space and polynomial time with the input encodings defined above. The detailed
algorithm is as follows:

Algorithm 1 Reduction of TCV to VISIT(w).

Require: (1, g1, l1, r1)(2, g2, l2, r2)...(n, gn, ln, rn)#(i1, v1)(i2, v2)...(ik, vk)
row ← 1
col← 1
Out←
for row = 1, ..., n do
Out← Out + GATE(row)
for col = row + 1, ..., n do

P ← FIND-PRED(row, col)
Out← Out + CROSS(P, row, col)

end for
Out← Out + COPY-ROW(row)

end for
Out← Out+END-ROUTINE(row)

Ensure: Out

To understand how this algorithm works, first divide Z2 in tiles whose side length is the maxi-
mum side length between the devices of Figure 14. Variables r and c correspond to the current row
and column, respectively.

The algorithm goes through the n rows of the tile grid. The column r of row r contains the
r-th gate. In other columns c (r < c) we check whether (r, c) is an edge of the circuit through the
subroutine FIND-PRED. Depending on the result, we write the appropriate crosses or unions using
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Figure 14: Gates performing the union and crossing of cables used in the reduction of TCV to
VISIT. The ID gate is a shortcut for two NOT gates connected through a COPY gate. C is a
shortcut for COPY. The crossed gate is the planar cross.
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the subroutine CROSS.

When a row is finished, a row of COPY gates is added underneath so that the Turmite performs
a carriage return to the tile (r+1, r+1) to begin the computation of the next row. This is performed
by the subroutine COPY-ROW. Finally we add to the output the coordinates of the last box and
the time when it should have been visited, using the subroutine END-ROUTINE.

Note that Out, the output of the algorithm, is a write-only variable. Therefore this algorithm
can be performed using a transducer. By construction, the output cell of the output gate is visited
if and only if the output value of the circuit is 1 (remember that the output cell of a gate is never
visited if the output is 0 - see Figure 11).

GATE(r): This subroutine reads the input for the type of the r-th gate, then returns the descrip-
tion of this gate to be written in the tile (r, r). If the gate is an input gate, the description
also includes the input value of the gate.

Its complexity is O(n) in time (to scan the input) and O(log n) in space (to write r).

FIND-PRED(r, c): This subroutine finds the value of lc and rc to check whether gate gr is a
predecessor of gc in the circuit. It outputs 1 if lc = r, 2 if rc = r and 0 otherwise. Its
complexity is O(n) in time (to scan the input) and O(log n) in space.

CROSS(P, r, c): This subroutine simply outputs the device of the corresponding type as seen in
Figure 14, using constant time and space.

COPY-ROW(r): This subroutine writes a row of COPY gates below the tiles (r, r+1), . . . , (r, n).
It has complexity O(n) in time and O(log(n)) in space (to keep the value of the counter
r + 1→ n)

END-ROUTINE(f): This subroutine adds the last wire of length t = n2T , and the additional
information needed by the encoding: (x1, x2) = (n, n) the coordinates of the output gate, (0, 0)
the initial coordinates of the Turmite, d the initial direction of the Turmite, and t = n2T . Its
complexity is O(log(n)) in time and space.

Time complexity. The subroutines FIND-PRED and CROSS are called up to n2 times; subrou-
tines GATE and COPY-ROW are called n times; and subroutine END-ROUTINE is called once.
All these subroutines have time complexity O(n). Therefore the time complexity of the reduction
algorithm is O(n3).

Space complexity. The algorithm uses up to 4 log n memory bits outside of the subroutines, and
each subroutine has space complexity O(log(n)). Therefore the space complexity of the algorithm
is O(log n).

This concludes the proof.
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5 Discussion

The results presented here improve and generalize those found in [GGM01] and [GMG02], where
the universality and P-completeness of Langton’s ant had been shown. In the case of Turing-
universality, the construction has been simplified through the use of radius 1/2 cellular automata,
and has been modified in order to have a periodic background (except for the finite perturbation
which encodes the input). The latter puts the result in line with the standards of the literature,
akin to the well known proof of universality for the elementary cellular automaton 110 in [Coo04].
In the case of P-completeness, the proof is much more rigorous and verifies that the reduction is
indeed log-space.

Moreover, the results apply to all non-trivial Turmites, despite their very different behaviors.
The key to achieving this generality is that all the constructions require the Turmite to visit any
given cell at most two times; since non-trivial rules have at least both a R → L and a L → R
transitions, the states can be chosen to comply with the requirements of the different gadgets. A
case that we have not considered here is that of “semitrivial” rules, characterized by an infinite
word of the form LnRω, for some n. However, their dynamics appear to be heavily limited: R cells
are needed if we want the Turmite to move at all, but afterwards they turn into a wall that freezes
any further movement. Hence, we do not expect universality nor P-completeness from them.

A possible further contribution of this article is the isolation of the abstract logic of the con-
struction, in the form of the cables and boxes system, from the technical realization of this system
in the particular case of Turmites. Since both the universality and P-hardness depend only on the
abstract construction, we hope that the same setting might be useful for similar results in other sys-
tems (e.g., other 2D Turing machines, or more generally, other systems of simple agents interacting
with some environment). To this end, we tried to keep the devices at a bare minimum.
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