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Abstract. The asymptotic behavior of a cellular automaton iterated on a random con�guration
is well described by its limit probability measure(s). In this paper, we characterize measures and
sets of measures that can be reached as limit points after iterating a cellular automaton on a simple
initial measure. In addition to classical topological constraints, we exhibit necessary computational
obstructions. With an additional hypothesis of connectivity, we show these computability conditions
are su�cient by constructing a cellular automaton realising these sets, using auxiliary states in order
to perform computations. Adapting this construction, we obtain a similar characterization for the
Cesàro mean convergence, a Rice theorem on the sets of limit points, and we are able to perform
computation on the set of measures, i.e. the cellular automaton converges towards a set of limit
points that depends on the initial measure. Last, under non-surjective hypotheses, it is possible to
remove auxiliary states from the construction.

Introduction

A cellular automaton is a complex system de�ned by a local rule which acts synchronously and
uniformly on the con�guration space AZ, where A is a �nite alphabet. These simple models have a
wide variety of di�erent dynamical behaviors. We are interested in the typical asymptotic behavior
starting from a random con�guration, as this is usually done in simulations; di�erent approaches
stemmed from such observations. It is well-described by taking the iterated image of the initial
measure under the action of the cellular automaton, and considering the limit points of this sequence
in the weak∗ topology.
It is natural to ask which sets of measures can be obtained as limit points in this way. Obviously,

any measure can be reached by iterating the identity on itself. Therefore, a more interesting ap-
proach is to start from some simple measure such as the uniform Bernoulli measure. In some sense,
this corresponds to SRB measures which are �physically� relevant invariant measures obtained when
starting from the Lebesgue measure in continuous dynamical systems [You02].
Formally speaking, given a simple initial measure µ, we want to characterize all reachable V(F, µ),

the sets of accumulation points of (F t∗µ)t∈N, the sequence of the images of µ under the iterated action

of F , and V ′(F, µ), the sets of accumulation points of
(

1
t+1

∑t
i=0 F

i
∗µ
)
t∈N

, the Cesàro mean of the

previous sequence, for all possible cellular automata F .
Previous works focused on the µ-limit set, which corresponds to the union of the support of the

limit measures [KM00, K·05]. Very complex µ-limit sets can be constructed [BPT06, BDS10], and
our construction is partly inspired from these works.

Describing limit measures has been done for only few concrete nontrivial examples. There are
essentially two types of convergence quite well understood:
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• convergence towards a simple measure: for example, the cyclic cellular automaton on three
states introduced in [Fis90], starting from a Bernoulli measure, converges towards a linear
combination of Dirac on uniform con�gurations [dMS11];
• randomisation phenomenon for linear cellular automata: the Cesàro mean sequence of the it-
eration of a linear cellular automaton on a initial measure converges to the uniform Bernoulli
measure as soon as the initial measure is in a large class which contains Markov mea-
sures [FMMN00, MM98, PY02].

For any cellular automaton, starting from a Bernoulli measure or a Markov measure, we obtain
after a �nite number of steps a hidden Markov chain which is well understood [BP11]. If we consider
a computable initial measure µ (which means that there is an algorithm that approximates at a
known rate the probability that a word u ∈ A∗ appears), then it is easy to see that F t∗µ is also
computable. For example, a Bernoulli or Markov measure is computable i� its parameters are
computable real numbers.
The limit measure(s) are not necessarily computable since the speed of convergence is not known.

Nevertheless, we show in Section 2 that there exists necessary computational obstructions. The main
problem is to prove the reciprocal, in other words: given a set of measures satisfying the computa-
tional obstructions, construct a cellular automaton which, starting on any simple initial measure,
reaches exactly this set asymptotically. Similar computational obstructions appear when character-
izing possible topological dynamics properties of subshifts of �nite type or cellular automata: possi-
ble entropies [HM10], possible growth-type invariants [Mey11], possible sub-actions [Hoc09, AS11]...
However, the construction is quite di�erent here since starting from a random con�guration requires
to self-organize the space, in the same spirit as the probabilistic cellular automaton of [Gác01] which
corrects the random perturbations.
In Section 3, we construct a cellular automaton F such that, starting from any shift-mixing

probability measure µ with full support, the limit points of the sequence of measures (F t∗µ)t∈N are
described as the accumulation points of a computable polygonal path of measures supported by
periodic orbits. First of all the cellular automaton divides the initial con�guration in segments and
formats each segment using a method similar to the one developed in [DPST11]. Computation
takes place in a negligible part of each segment and the result is copied periodically on the rest
of the segment. In order to have an arbitrarily large area of computation, segments are merged
progressively in a controlled manner. The di�culty of the construction is to synchronize all the
operations to ensure the convergence.
In Section 4 we use the construction of Section 3 to solve some related problems, along with some

open questions. The results are, for a �xed measure µ in a large class of measures:

• characterization of shift-invariant measures ν such that there exists a cellular automaton F
which veri�es F t∗µ −→

t→∞
ν (Corollary 1);

• characterization of connected subsets of shift-invariant measures K such that there exists a
cellular automaton F which veri�es V(F, µ) = K (Corollary 2);
• characterization of subsets of shift-invariant measures K′ such that there exists a cellular
automaton F which veri�es V ′(F, µ) = K′ (Corollary 3);
• characterization of connected subsets of shift-invariant measures K′ ⊂ K such that there
exists a cellular automaton F which veri�es V(F, µ) = K and V ′(F, µ) = K′ (Corollary 4).
• Rice theorem for shift-invariant measures and connected subsets of shift-invariant measures
reached by a cellular automaton (Corollaries 5, 6 and 7).

In Section 4.4, we consider the case where the set of limit points depends on the initial measure.
Computational constraints appear to describe functions µ 7−→ V(F, µ) that can be realized in this
way. Indeed, it is possible to �transfer� the computational complexity of the initial measure (using
it as an oracle) to the set of limit points. Modifying the construction of Section 3, we manage to
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build a set of limit points depending on the density of a special state; however, we do not obtain a
complete characterization.

In the Section 5, we carry the previous characterizations to the case where auxiliary states are
not allowed, i.e., the cellular automaton can only use the same alphabet as the limit measure(s).
This is only possible, however, under some additional hypotheses on the support of the measures.

1. Definitions

1.1. Con�guration space and cellular automata

Let A be a �nite alphabet. Consider AZ the space of con�gurations which are Z-indexed se-
quences in A. If A is endowed with the discrete topology, AZ is compact, perfect and totally
disconnected in the product topology. Moreover one can de�ne a metric on AZ compatible with
this topology:

∀x, y ∈ AZ, dC(x, y) = 2−min{|i|:xi 6=yi i∈Z}.

Let U ⊂ Z. For x ∈ AZ, denote xU ∈ AU the restriction of x to U. Given a pattern w ∈
AU, one de�nes the cylinder [w]U = {x ∈ AZ : xU = w}. Denote A∗ =

⋃
nAn the set of all

�nite words w = w0 . . . wn−1; |w| = n is the length of w. Also denote [w]i = [w][i,i+|w|−1] and
[w] = [w]0 = [w][0,|w|−1]. For any u ∈ A∗ such that |u| ≤ |w|, de�ne the frequency of u in w as

Freq(u,w) = 1
|w|−|u|+1Card

({
i ∈ [0, |w| − |u|] : w[i,i+|u|] = u

})
.

The shift map σ : AZ → AZ is de�ned by σ(x)i = xi+1 for x = (xm)m∈Z ∈ AZ and i ∈ Z. It is
an homeomorphism of AZ. For w ∈ A∗, ∞w∞ is the σ-periodic word de�ned by ∞w∞[0,|w|−1] = w

and σi+|w|(∞w∞) = σi(∞w∞) for all i ∈ Z.
A cellular automaton (CA) is a pair (AZ, F ) where F : AZ → AZ is a continuous function

that commutes with the shift (σ ◦F = F ◦ σ). By Hedlund's theorem, it is equivalent to a function
de�ned by F (x)i = F ((xi+u)u∈UF ) for all x ∈ AZ and i ∈ Z, where UF ⊂ Z is a �nite set named

neighborhood and F : AUF → A is a local rule.

1.2. Sets of measures on AZ

1.2.1. Dynamical properties

Let B be the Borel sigma-algebra of AZ. Denote byM(AZ) the set of probability measures on AZ

de�ned on the sigma-algebra B. LetMσ(AZ) be the σ-invariant probability measures on AZ,
that is to say the measures µ ∈M(AZ) such that µ(σ−1(B)) = µ(B) for all B ∈ B.
Usually Mσ(AZ) is endowed with the weak∗ topology: a sequence (µn)n∈N of Mσ(AZ) con-

verges to µ ∈ Mσ(AZ) if and only if, for all �nite subsets U ⊂ Z and for all patterns u ∈ AU, one
has limn→∞ µn([u]U) = µ([u]U). In the weak∗ topology, the setMσ(AZ) is compact and metrizable.
A metric is de�ned by

dM(µ, ν) =
∑
n∈N

1

2n
max
u∈An

|µ([u])− ν([u])|.

De�ne the ball centered on µ ∈Mσ(AZ) of radius ε > 0 as

B(µ, ε) =
{
ν ∈Mσ(AZ) : dM(µ, ν) ≤ ε

}
.

A measure µ ∈ Mσ(AZ) is σ-ergodic if for every σ-invariant Borel subset B ∈ B (that is to
say σ−1(B) = B µ-almost everywhere), one has µ(B) = 0 or 1. The set of σ-ergodic probability
measures is denoted byMσ−erg(AZ).
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For U ⊂ Z not necessarily �nite, denote by BU the σ-algebra generated by the set {[u]U : u ∈
AU′ ,U′ ⊂

�nite
U}. De�ne the weak mixing coe�cients of a measure µ ∈Mσ(AZ) as

ψµ(n) = sup

{∣∣∣∣ µ(A ∩B)

µ(A)µ(B)
− 1

∣∣∣∣ : A ∈ B]−∞,0], B ∈ B[n,∞[, µ(A) > 0, µ(B) > 0

}
.

A measure µ ∈Mσ(AZ) is ψ-mixing if ψµ(n) −→
n→∞

0. DenoteMσ−mix(AZ) the set of ψ-mixing

measures, of courseMσ−mix(AZ) ⊂Mσ−erg(AZ).
For a measure µ ∈ Mσ(AZ), de�ne supp(µ), the support of µ, as the set of con�gurations of

AZ such that any open neighborhood of these points have positive measure. Thus µ([u]) > 0 for all
u ∈ A∗. DenoteMfull

σ−erg(AZ) the set of ergodic measures with full support, andMfull
σ−mix(AZ) the

set of ψ-mixing measures with full support.

1.2.2. Classical examples

Let λ = (λa) ∈ [0; 1]A such that
∑

a∈A λa = 1. The associated Bernoulli measure µλ is de�ned
by

µλ([u0 . . . un]) = λu0 · · ·λun for all u0 . . . un ∈ A∗.

The Dirac measure supported by x ∈ AZ is de�ned as δx(A) = 1x∈A. Generally δx is not
σ-invariant. However, if x is σ-periodic, it is possible to de�ne the σ-invariant measure supported
by x taking the mean of the measures δσi(x). Thus, for a word w ∈ A∗, we de�ne the σ-invariant
measure supported by ∞w∞ by

δ̂w =
1

|w|
∑

i∈[0,|w|−1]

δσi(∞w∞).

The set of measures
{
δ̂w : w ∈ A∗

}
is dense inMσ(AZ) [Pet83].

1.2.3. Action of a cellular automaton on Mσ(AZ) and limit points

Let (AZ, F ) be a cellular automaton and µ ∈ Mσ(AZ). De�ne the image measure F∗µ by
F∗µ(A) = µ(F−1(A)) for all A ∈ B. Since F is σ-invariant, that is to say F ◦ σ = σ ◦ F ,
one deduces that F∗(Mσ(AZ)) ⊂ Mσ(AZ) and F∗(Mσ−erg(AZ)) ⊂ Mσ−erg(AZ). This de�nes a
continuous application F∗ :Mσ(AZ)→Mσ(AZ).
We consider (F t∗µ) the sequence of iterated images of µ by F∗, and its Cesàro mean at time

t ∈ N de�ned by

ϕFt (µ) =
1

t+ 1

t∑
i=0

F i∗µ ∈Mσ(AZ).

For a measure µ ∈ Mσ(AZ), we are interested in the asymptotic behavior of the sequences
(F t∗µ)t∈N and (ϕFt µ)t∈N. De�ne µ-limit measures set V(F, µ) as the the set of limit points of
the sequence (F tµ)t∈N and the Cesàro mean µ-limit measures set V ′(F, µ) as the set of limit
points of the sequence (ϕFt µ)t∈N . SinceMσ(AZ) is compact, V(F, µ) and V ′(F, µ) are nonempty.
When V(F, µ) is a singleton {ν}, then F t∗µ([u]) −→

t→∞
ν([u]).

Our main purpose is to characterize which sets of measures can be realised in this way. There
are topological obstructions for these sets: V(F, µ) and V ′(F, µ) are closed and thus compact, and
V ′(F, µ) is connected since dM(ϕFt (µ), ϕFt+1(µ)) −→

t→∞
0. In the next section, we show there are

computability obstructions when the initial measure is computable.
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2. Computability obstructions

2.1. Notion of computability

De�nition 1. A Turing machine TM = (Q,Γ,#, q0, δ, QF ) is de�ned by:

• Γ a �nite alphabet, with a blank symbol # /∈ Γ. Initially, a one-sided in�nite memory tape
is �lled with #, except for a �nite pre�x (the input), and a computing head is located on
the �rst letter of the tape;
• Q the �nite set of states of the head; q0 ∈ Q is the initial state;
• δ : Q × Γ → Q × Γ × {←, · ,→} the transition function. Given the state of the head and
the letter it reads on the tape � depending on its position � the head can change state,
replace the letter and move by one cell at most.
• QF ⊂ Q the set of �nal states � when a �nal state is reached, the computation stops and
the output is the value currently written on the tape.

A function f : X → Y with X and Y two enumerable sets is computable if there exists a Turing
machine that, up to reasonable encoding, stops and returns f(x) on any entry x ∈ X. In this paper,
X and Y will be limited to N,Q,A∗ and their products. Similarly, a set K ⊂ X is computable if
1K is computable.

Remark. An encoding for X is simply a choice for Γ, and a surjection from a subset of Γ∗ to
X; strictly speaking, the computability of a function depends on the chosen encodings, but most
natural choices give rise to the same result. For example, we can choose as an encoding for Q on
{0, 1, |} the function p2|q2 7→ p

q , where p
2 is the binary representation of p.

2.2. Measures and computability

De�nition 2. A measure µ ∈Mσ(AZ) is computable i� there exists f : A∗×N→ Q computable
such that

|µ([u])− f(u, n)| < 2−n for all u ∈ A∗ and n ∈ N.
A sequence of measures (µi)i∈N is computable i� there exists f : A∗ × N× N→ Q computable

such that |µi([u])− f(u, n, i)| < 2−n. This is a stronger statement than all µi are computable.
A measure µ ∈Mσ(AZ) is semi-computable i� there exists an computable sequence of measures

(µi)i∈N such that limi→∞ µi = µ. Equivalently there exists f : A∗ × N→ Q computable such that

|µ([u])− f(u, n)| −→
n→∞

0 for all u ∈ A∗.

DenoteMcomp
σ (AZ) the set of computable measures andMs-comp

σ (AZ) the set of semi-computable
measures. Of course Mcomp

σ (AZ) ⊂ Ms-comp
σ (AZ). There exists an equivalent way to de�ne these

notions:

Proposition 1. (i) A measure µ ∈ Mσ(AZ) is computable if and only if there exists f : N → A∗

computable such that dM

(
µ, δ̂f(n)

)
≤ 2−n for all n ∈ N.

(ii) A measure µ ∈Mσ(AZ) is semi-computable if and only if there exists f : N→ A∗ computable

such that lim
n→∞

δ̂f(n) = µ.

Proof. (i) Let µ ∈ Mcomp
σ (AZ). Given some n ∈ N, we can enumerate words in A∗ until we �nd a

word f(n) such that |µ([u])− δ̂f(n)([u])| < 2−n−2 for all u ∈ Ak with k ∈ [0, n+ 1]. This is possible

since the set
{
δ̂w : w ∈ A∗

}
is dense inMσ(AZ), and since µ and δ̂f(n)([u]) are computable. One

has

dM(µ, δ̂f(n)) =
∑
i∈N

1

2i
max
u∈Ai

|µ([u])− δ̂f(n)([u])| ≤ 1

2n+1
+
∑
i≥n+2

1

2i
≤ 1

2n
.
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(ii) Let µ ∈ Ms-comp
σ (AZ). There exists a computable sequence of measures (µi)i∈N such that

limi→∞ µi = µ. For each µn, we �nd a word f(n) ∈ A∗ such that dM(µn, δ̂f(n)) ≤ 2−n for n ∈ N.
Clearly f : N→ A∗ is computable and dM(µ, δ̂f(n)) ≤ dM(µ, µn) + dM(µn, δ̂f(n)) −→

n→∞
0.

In both cases, the reciprocal is obvious. �

2.3. Action of a cellular automaton on computable measures

Proposition 2. Let (AZ, F ) be a cellular automaton. If µ ∈ Mcomp
σ (AZ) then (F t∗µ)t∈N is a

computable sequence of measures. In particular, if F t∗µ −→
t→∞

ν then ν ∈Ms-comp
σ (AZ).

Proof. Suppose |A| = 2 to simplify the proof. By de�nition, there is a computable function f :
A∗×N→ Q such that |µ([u])−f(u, n)| ≤ 2−n. Because F is de�ned locally, if we write l = minUF
and r = maxUF , F t(x)[0,k] will depend only on x[lt,rt+k]. In other words, for all u ∈ Ak, there is a
set Predt(u) ⊂ A[lt,rt+k] such that F−t([u]) = ∪v∈Predt(u)[v]. Now consider the function

f ′ : (u, n, t) 7→
∑

v∈Predt(u)

f(v, 2n+ (r − l)t).

It is computable by enumerating elements of Ak+(r−l)t and checking if F t([v]−lt) ⊂ [u] by iterating
the local rule on v. Finally

|F∗µ([u])− f ′(u, n, t)| =

∣∣∣∣∣∣µ
 ⋃
v∈Predt(u)

[v]

− ∑
v∈Predt(u)

f(v, 2n+ (r − l)t)

∣∣∣∣∣∣
≤

∑
v∈Predt(u)

|µ([v])− f(v, 2n+ (r − l)t)|

≤ 2n+(r−l)t · 2−2n−(r−l)t = 2−n

which means that (F t∗µ)t∈N is a computable sequence of measures. �

We have obtained a computability obstruction on single limit measures. In the following section,
we extend this obstruction to sets of limit points.

2.4. Compact sets in computable analysis

We introduce computability notions on compact sets. This is a part of the theory of computable
analysis on metric spaces for which a standard reference book is [Wei00]. In a general metric space,

we de�ne computability by using a countable dense subset, here (δ̂w)w∈A∗ .

De�nition 3. Let X,Y be two enumerable sets.
A sequence of functions (fi : X → Y )i∈N is computable if (i, x) 7→ fi(x) is computable.
A function f : X → Y is Σ2-computable (resp. Π2-computable) if f = supi∈N infj∈N fi,j (resp.

f = infi∈N supj∈N fi,j), where (fi,j)(i,j)∈N2 is a computable sequence of functions. The computability
of set K ⊂ X is de�ned as the computability of its characteristic function.

De�nition 4. Extending the previous de�nition to uncountable sets, a closed set K ⊂Mσ(AZ) is

Σ2-computable if the set
{

(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ F = ∅
}
is Σ2-computable, that is to say

the characteristic function of this enumerable set is Σ2-computable.

Remark. The symmetric notions of Π2- and Σ2-computability comes from an analogy with the real
arithmetic hierarchy [ZW01, Zie05]. These de�nitions extend naturally to Πn- and Σn-computability.
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The Σ2-computability of a closed set can be de�ned in other equivalent ways. We �rst need to
extend to notion of Σ2-computability to functions mapping noncountable sets.

De�nition 5. A sequence of functions (fn :Mσ(AZ) −→ R)n∈N is computable if:

• there exists a : N×N×A∗ −→ Q computable such that
∣∣∣fn(δ̂w)− a(n,m,w)

∣∣∣ ≤ 1
m for every

w ∈ A∗ and n,m ∈ N (sequential computability);
• there exists b : N −→ Q computable such that dM(µ, ν) < b(m) implies |fn(µ)− fn(ν)| ≤ 1

m
for all n,m ∈ N (computable uniform equicontinuity).

A function f : Mσ(AZ) −→ R is semi-computable (or ∆2-computable) if there exists a com-
putable sequence of functions (fn :Mσ(AZ) −→ R)n∈N such that f = limn fn.
A function f :Mσ(AZ) −→ R is Σ2-computable if there exists a computable sequence of functions
(fi,j :Mσ(AZ) −→ R)(i,j)∈N such that f = supi infj fi,j .

Proposition 3. Let K be a closed set. The following are equivalent:

(1) the set
{

(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K = ∅
}

is Σ2-computable;

(2) dK is Σ2-computable;
(3) K = f−1({0}) where f is a semi-computable function.

Proof.
(1 ⇒ 2) Assume there is a computable function f : N2 × A∗ × Q −→ {0, 1} such that, for every

w ∈ A∗ and r ∈ Q, B(δ̂w, r) ∩ K = ∅ ⇔ supi infj f(i, j, w, r) = 1.

Consider the sequence
(
di,j,w,r(µ) = f(i, j, w, r) max

(
0, r − dM(δ̂w, µ)

))
(i,j,w,r)∈N2×A∗×Q

. The

function (i, j, w, r, w′) 7→ di,j,w,r(δ̂w′) is computable and every di,j,w,r is 1-Lipschitz, hence this
sequence of functions is computable. We now show that dK = supw,r supi infj di,j,w,r.

For any (w, r) such that supi infj f(i, j, w, r) 6= 0, then dK(δ̂w) > r, and thus supi infj di,j,w,r(µ) =

max
(

0, r − dM(δ̂w, µ)
)
≤ max

(
0, dK(δ̂w)− dM(δ̂w, µ)

)
≤ dK(µ) for all µ ∈Mσ(AZ).

If µ ∈ K, we conclude that supi,w,r infj di,j,w,r(µ) = 0 = dK(µ).

Now let µ /∈ K. For all ε > 0, there exists w such that dM(δ̂w, µ) ≤ ε and δ̂w /∈ K. Let r ∈ Q be

such that 0 < dK(δ̂w)− r < ε, which implies that B(δ̂w, r) ∩K = ∅ and so supi infj f(i, j, w, r) 6= 0.

Furthermore dK(µ) ≤ dK(δ̂w) + dM(δ̂w, µ) ≤ r + 2ε, and supi infj di,j,w,r = r − dM(δ̂w, µ) >
dK(µ)− 3ε. The latter is true for every ε > 0, and we deduce that supi,w,r infj di,j,w,r = dK(µ).

(2 ⇒ 3) Let (di,j : Mσ(AZ) −→ R)(i,j)∈N2 be a computable sequence of functions such that
dK = supi∈N infj∈N di,j . Denote gi,n = inf{di,j : j ∈ [0, n]}.

dK(µ) = 0⇔
∑
i∈N

1

2i

(
inf
j∈N

di,j(µ)

)
= 0

⇔
∑
i∈N

1

2i

(
lim
n→∞

gi,n(µ)
)

= 0

⇔ lim
n→∞

∑
i∈N

1

2i
gi,n(µ) = 0

Let fn : µ 7→
∑

i∈N
1
2i
gi,n(µ). (fn)n∈N is a computable sequence of functions, since comput-

ing (n,w′) 7→ fn(δ̂w′) up to precision 2−r only requires to compute the values of di,j(δ̂w′) for
i, j ∈ {0, . . . , r}, and the e�ective uniform equicontinuity of (fn)n∈N is a consequence of the e�ective
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uniform equicontinuity of (di,j)(i,j)∈N2 . Thus F = f−1(0) where f = limn fn.

(3 ⇒ 1) Let (fn : Mσ(AZ) −→ R)n∈N be a computable sequence of functions such that f =

limn fn. For any q ∈ Q, w′ ∈ A∗ and i ∈ N, let Fq,w′,i =
{

(w, r) ∈ A∗ ×Q : dM(δ̂w, δ̂w′) ≤ r ⇒ |fi(δ̂w′)| > q
}
.

The functions (q, w′, i, w, r) 7→ 1(w,r)∈Fq,w′,i are computable and thus the characteristic functions

1Fq,w′,i are sequentially computable. Additionally:

F =
⋃
q∈Q+

n∈N

⋂
w′∈A∗
i≥n

Fq,w′,i and thus 1F = sup
q∈Q+

n∈N

inf
w′∈A∗
i≥n

1Fq,w′,i .

Indeed, let (w, r) be such that B(δ̂w, r) ∩ K = ∅. Let ε = min{|f(µ)| : µ ∈ B(δ̂w, r)} > 0. For

any µ ∈ B(δ̂w, r), there is a rank nε(µ) such that for all n ≥ nε(µ), fn(µ) > 3ε
4 . By taking rε ∈ N

such that b(rε) <
ε
4 , where b is given in the de�nition of the computable uniform equicontinuity of

(fn)n∈N, we have fn(ν) > ε
2 for all ν ∈ B(µ, b(rε)) and all n ≥ nε(µ). Since B(δ̂w, r) is compact, it

can be covered by a �nite number of balls of radius rε, and we take nε the maximal value of nε(µ)
on all the ball centers.

The previous paragraph shows that for all w′ such that δ̂w′ ∈ B(δ̂w, r), |fi(δ̂w′)| > ε
2 for all i ≥ nε.

Thus (w, r) ∈ F by taking any q ≤ ε
2 . The converse is clear.

�

Proposition 4. Let (AZ, F ) be a cellular automaton and µ ∈ Mcomp
σ (AZ). Then V(F, µ) and

V ′(F, µ) are Σ2-computable compact sets.

Proof. Let fn : ν 7→ dM(Fn∗ µ, ν). Since µ is computable, (fn)n∈N is sequentially computable.
Moreover |fn(ν) − fn(ν ′)| = |dM(Fn∗ µ, ν) − dM(Fn∗ µ, ν

′)| ≤ dM(ν, ν ′) so (fn)n∈N is computably
uniformly continuous. The result follows from the fact that dV(F,µ)(ν) = lim infn→∞ dM(Fn∗ µ, ν) =
supm infn>m dM(Fn∗ µ, ν).
The same reasoning holds for V ′(F, µ). �

When the initial measure is not computable, it can be used as an oracle. These obstructions will
be generalized accordingly in Section 4.4.

2.5. Some examples

These computable obstructions are not restrictive and it is possible to exhibit a wide variety of
computable measures, semi-computable measures or Σ2-computable compact sets of measures:

• a Bernoulli measure or a Markov measure with computable (resp. semi-computable) param-
eters are computable (semi-computable);
• an unique ergodic subshift which is e�ective has a semi-computable measure; this is the case
for any subshift obtained by a primitive substitution or a Sturmian subshift where the slope
is computable;
• the set of shift-invariant measures and the set of measures of maximal entropy for any
e�ective subshift are Σ2-computable compact sets;
• denote λp the Bernoulli measure on {0, 1}Z such that µ([0]) = p. The set {λp : p ∈ F}, where
F is a Σ2-computable closed subset of [0, 1], is a Σ2-computable compact set ofMσ({0, 1}Z)
but is connected only if F is. However {αλp + (1 − α)λq : p, q ∈ F and α ∈ [0, 1]} is a
Σ2-computable compact connected set of {0, 1}Z;

8



• denote µp ∈ Mσ({0, 1}Z) the measure supported by the Sturmian subshift of slope α. The
set {µp : p ∈ F}, where F is a Σ2-computable closed subset of [0, 1], is a Σ2-computable
compact set ofMσ({0, 1}Z) but is not connected if F it is not.

As we will see in Section 4.1, these sets and many others can be realized as the µ-limit measures
set of a cellular automaton.

2.6. Technical characterization of Σ2-computable compact connected sets

To build a cellular automaton reaching a Σ2-computable compact set of measures as its µ-limit
measures set, we need a recursive enumeration of words (wn)n∈N which describes it in a certain
way. For technical reasons, the µ-limit measures set of the construction presented in Section 3 is
a connected set, because it builds an in�nite polygonal path composed of segments of the form[
δ̂u, δ̂v

]
=
{
tδ̂u + (1− t)δ̂v : t ∈ [0, 1]

}
⊂ Mσ(AZ) where u, v ∈ A∗. The following proposition

describes how such connected sets can be covered by a polygonal path.

De�nition 6. Let (wn)n∈N be a sequence of words of A∗. Denote V((wn)n∈N) the limit points of

the polygonal path de�ned by the sequence of measures (δ̂wn)n∈N

V((wn)n∈N) =
⋂
N>0

⋃
n≥N

[
δ̂wn , δ̂wn+1

]
.

Proposition 5. Let K ⊂Mσ(AZ) be a non-empty Σ2-computable, compact, connected set (Σ2-CCC
for short). Then there exists a computable sequence of words (wn)n∈N such that K = V((wn)n∈N).

Proof. By Proposition 3 there is a computable sequence of functions (fn)n∈N satisfyingK = f−1({0})
where f = limn∈N fn, and let a : N×N×A∗ → Q and b : N→ Q be the computable functions given
by De�nition 5. Without loss of generality,we can assume that b is a strictly decreasing function

and b(i) −→
i→∞

0. For k ∈ N, de�ne αk = min
{
l ∈ N : Mσ(AZ) =

⋃
u∈A≤l B(δ̂u, b(k))

}
.

De�ne:

Vk =

{
w ∈ A≤αk : ∃n ≥ k such that a(n, 2k,w) <

2

k

}
Vt
k =

{
w ∈ A≤l :

∃n ∈ [k, t] such that a(n, 2k,w) < 2
k

l = min{i ≤ t : ∀u ∈ A≤t, w ∈ A≤i, dM(δ̂u, δ̂w) ≤ b(k)}

}
Claim 1: Vt

k is increasing w.r.t. t and ∃Tk,Vk = VTk
k . Furthermore, the function (k, t) → Vt

k

is computable.

Proof. For all k and t, it is clear that Vt
k ⊂ Vt+1

k . The conditions for being included in Vt
k can

be checked by computing computable functions over a �nite range of values, so (k, t) 7→ Vt
k is

computable.
By de�nition, we have l ≤ αk. Because the periodic measures are dense in Mσ(AZ), we

actually have l = αk when t is large enough. Furthermore, if w ∈ Vk, then w satis�es the �rst

condition in Vt
k for t large enough. Therefore, there is a Tk such that Vk = VTk

k . 3 Claim 1

Notice that Tk is not necessarily computable, which means that even though Vk is �nite, we do
not know when the computation is �nished. The algorithm for computing the sequence (wn)n∈N is
the following:
Algorithm.

• Compute each Vt
k for k ≤ t, for increasing values of t;

• Assume w0 . . . wn have already been computed and a new element w ∈ Vt+1
k \V

t
k is com-

puted.
9



� Find the largest i ≤ k such that one can �nd a path wn = u0, u1, . . . , ul = w with
u1, . . . ul−1 ∈ V t

i and dM(uk, uk+1) ≤ 4b(i).
� This path is added to the sequence (if no such path is found, w alone is added to the
sequence).

Now we will prove the correctness of this algorithm.

Claim 2: If µ ∈ K, then µ ∈ V((wn)n∈N).

Proof. There is a sequence of words (un)n∈N such that un ∈ Aαn and dM(δ̂un , µ) < b (n) for

all n ∈ N; by equicontinuity one has |f(δ̂un) − f(µ)| < 1
n so f(δ̂un) < 1

n . Thus, there is a

t > |un| such that ft(δ̂un) < 3
2n . One deduces that a(t, 2n, un) ≤ ft(δ̂un) + 1

2n < 2
n , which

means that each un ∈ Vn for every n, and by construction it appears at some point in the
sequence (wn)n∈N. 3 Claim 2

Claim 3: ∀ε > 0,∃kε,∀k > kε, w ∈ Vk ⇒ dM(δ̂w,K) ≤ ε.

Proof. By compacity, there exists a δε > 0 such that f(δ̂w) ≤ δε ⇒ dM(δ̂w,K) ≤ ε.
Now let µ ∈Mσ(AZ) be any measure such that f(µ) ≥ δε. ∃nε(µ), ∀n ≥ nε(µ), fn(µ) > 2δε

3 .

By taking rε ∈ N such that 1
rε
< δε

3 , we have by computable uniform equicontinuity of (fn)n∈N

fn(ν) > δε
3 for all ν ∈ B(µ, b(rε)) and all n ≥ nε(µ).

Since {µ ∈ Mσ(AZ) : f(µ) ≥ δε} is compact, we can cover it with a �nite number of
balls of radius b(rε), and we de�ne nε the maximum value of nε(µ) on ball centers. Thus,
∀n > nε, ∀µ ∈Mσ(AZ), f(µ) > δε ⇒ fn(µ) > δε

3 .

To conclude, taking kε ≥ max(nε,
9
δε

), we have for all k ≥ kε: w ∈ Vk ⇒ fk(δ̂w) ≤ 2
k + 1

2k ≤
δε
3 ⇒ f(δ̂w) ≤ δε ⇒ dM(δ̂w,V) ≤ ε. 3 Claim 3

Claim 4: For every ε > 0, there exists a tε such that, for every t′ ≥ t ≥ tε, if wn ∈ Vk
t+1\Vk

t and

w ∈ Vk′
t′+1\Vk′

t′ , then the path u0, . . . ul built in the corresponding step of the algorithm satis�es

∀ν ∈
⋃

0≤i<l[δ̂ui , δ̂ui+1 ], dM(ν,K) ≤ ε.

Proof. Let K1 be large enough such that b(i) ≤ ε
4 for any i ≥ K1 and K1 ≥ k ε

2
, and put K2 =

kb(K1) as de�ned in the previous claim. Let tε = max0≤i≤K2(Ti) and assume wn ∈ Vt+1
k \V

t
k

and w ∈ Vt′+1
k′ \V

t′
k′ with t

′ ≥ t ≥ tε. Then k ≥ K2 and k
′ ≥ K2.

For each element µ ∈ K there is an element uK1 ∈ A≤αK1 such that dM(µ, δ̂uK1
) < b(K1),

and therefore f(δ̂uK1
) < 1

K1
so uK1 ∈ VK1 . In other words, K ⊂

⋃
u∈VK1

B
(
δ̂u, b(K1)

)
.

Since wn ∈ Vk with k ≥ K2 = kb(K1), dM(δ̂wn ,K) ≤ b(K1) and the same is true for w.

Therefore
⋃
u∈VK1

B
(
δ̂u, 2b(K1)

)
contains δ̂wn and δ̂w as well as K is a single connected

component, since K is connected. This means that the i chosen in this step of the algorithm

satis�es i ≥ K1. Since the path is entirely included in
⋃
u∈VK1

B
(
δ̂u, 2b(i)

)
with b(i) ≤ ε

4 ,

and since u ∈ VK1 ⇒ d(δ̂u,K) ≤ ε
2 , the result follows. 3 Claim 4

Claim 5: If µ 6∈ K, then µ 6∈ V((wn)n∈N).

Proof. This is a direct consequence of Claim 4. 3 Claim 5

�
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3. Construction of a cellular automaton realising a given set

of measures

We want to prove a reciprocal to Proposition 2 and a partial reciprocal to Proposition 4 using
Proposition 5. Given a computable sequence of words (wn)n∈N in B∗, we construct a cellular
automaton realising V((wn)n∈N) as its µ-limit measures set.

Theorem 1. Let (wn)n∈N be a computable sequence of words of B∗, where B is a �nite alphabet.
Then there is a �nite alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that:

• for any measure µ ∈Mfull
σ−mix(AZ), V(F, µ) = V((wn)n∈N).

• if V((wn)n∈N) = {ν}, then for any measure µ ∈Mfull
σ−erg(AZ), F t∗µ −→

t→∞
ν.

Furthermore we get an explicit bound for the convergence rate in the �rst point of the theorem.
If wn is computable in space S(n), assuming w.l.o.g. that S(n) is an increasing sequence, de�ne
S−1(k) = max{n : S(n) ≤ k}.

dM(F t∗µ,V((wn)n∈N)) ≤ O
(

1

log(t)

)
+sup

dM(ν,V((wn)n∈N)) : ν ∈
⋃

n≥n(t)

[ ̂δwS−1(
√
n)
, ̂δwS−1(

√
n)+1

]

 ,

where n(t) = Θ(log(t)2). The �rst term of the upper bound corresponds to the intrisic limitations
of the construction, the second term depends on the speed of convergence of the polygonal path

de�ned by δ̂wn , n > n(t) to its limit V((wn)n∈N, when the sequence is �slowed down� by repeating
elements so that computational space does not exceed

√
n.

In the rest of the section, we detail the construction of this cellular automaton and prove this
theorem.

3.1. Sketch of the construction

In this section, we present a sketch of the construction of the alphabet A and the cellular automaton
F . Our goal is to compute each wn successively and write concatenated copies of it on the whole

con�guration to approach the measure δ̂wn . A will contain a symbol W (for wall) persisting in
time, except under special circumstances; wn will be computed and then copied repeatedly, in each
area between two subsequent walls, in an independant manner.
A main issue is to initialize the computation synchronously for each wall, even though we have

no control over what cells appear at time 0. To do this, we de�ne another symbol I (init), which
appears only in the initial con�guration, creating a wall while erasing the contents of neighboring
cells and initializing di�erent processes de�ned below. This process is detailed in Section 3.2.1 The
resulting wall is said to be initialized.

De�nition 7. Let x ∈ AZ. [i, j] is a segment at time 0 if xi and xj are two consecutive I

symbols, and a segment at time t if F t(x)i and F
t(x)j are two consecutive initialized walls W .

De�ne the length of this segment as i− j − 1.

Computation on each segment will be performed independantly. Apart from I and W , the new
alphabet A will be divided in di�erent layers: the main layer where the words wn will be output
and recopied, and auxiliary layers where computation and other processes will take place. Since
we have no control over the initial contents of each segment, we �rst want to erase non-initialized
walls and anything on the auxiliary layers not issued from an I symbol (sweeping the segment),
to guarantee that synchroneous computation takes place everywhere.
To do that, each initialized wall keeps on its left the value of the current time under the form of

a binary counter incrementing at each step on one layer (time counter - see Section 3.2.3), and
11



sends another incrementing counter to its right progressing at speed one on another layer (sweeping
counter - see Section 3.2.4). Sweeping counters will sweep the segment as they progress, using the
following method.
Time and sweeping counters already present in the initial con�guration (not initialized) have a

positive value at time 0, whereas those created by an I symbol (initialized) have value 0 at time
1, and they increment at the same rate. Thus, non initialized walls have older time counters, and
by comparing time counters and sweeping counters as they cross, we can erase older counters and
non-initialized walls as well. Figure 1 is an overview of those processes.

I I I

see Section 3.2.1

F
ig
u
re

3
a
n
d
4

F
ig
u
re

5

F
ig
u
re

6

Figure 1. Sketch of the bootstrapping and sweeping processes. Vertical lines are
walls. Dashed parts contain time counters (section 3.2.3) and Turing machines (sec-
tion 3.3.2). Slanted lines are sweeping counters (section 3.2.4), and white areas and
grey areas are swept and non-swept, respectively.

Meanwhile, a Turing machine is simulated on another layer in the space delimited by the time
counter. This machine will successively compute each wn (see Section 3.3.2) and copy it on the main
layer of the segment to its left (see Section 3.3.3). For each wn, this copy happens synchronously on
the whole con�guration, at some time Tn that we will �x later. At the same time Tn, segments of
length n are merged with their left neighbour in order to enlarge computational space and decrease
the density of cells with nonempty auxiliary layers (see Section 3.4). To determine the length of its
right segment, each wall sends on a dedicated layer a signal to the right that bounces o� the next
wall and counts the return time. The Figure 2 is an overview of copy and merging processes.
Thus the enlarged alphabet can be written as A =

{
I , W

}
∪Amain×Acomp×Atime×Asweeping×

Acopy ×Amerge, where:

• I and W are the two above-mentioned symbols;
• Amain = B ∪ {#} is the layer on which wn is output and then recopied;
• Acomp is the layer where computing takes place by simulating Turing machines;
• Atime is the layer on which time counters are incremented;
• Asweeping is the layer on which sweeping counters move and are incremented, and where
comparisons are done;
• Acopy is an auxiliary layer used in the process of writing copies of the output on the main
layer;
• Amerge is an auxiliary layer used in the process of merging two segments.
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Figure 8

Figure 7

Newer merging signals
erase older signals

Figure 2. Sketch of the copying and merging processes. We suppose all walls are
initialized. Slanted thick lines are copy processes (see Section 3.3.3), slanted dotted
lines are merging signals (see Section 3.4).

All those alphabets contain a symbol # (blank) representing the absence of information. If u ∈ A,
note main(u), resp. comp(u), time(u). . . the projections on each layer (the result being # on I

and W ). We have B ⊂ A up to the identi�cation b 7→ (b,#,#,#,#,#).

We shall detail the di�erent alphabets in the following sections. As we will see, our construction
needs interactions at a distance at most three, so we can take UF = {−3, . . . , 3} as the neighbour-
hood of F .

3.2. Formatting the segments

3.2.1. Bootstrapping

If two symbols I are separated by two cells or less, the rightmost one is destroyed. Otherwise,
any I symbol turns into a W , erasing the contents of three cells to its right and left (including
walls), initializing on its left a computation and a time counter, and on its right a sweeping counter.
No more I or W symbols can be created.

Walls, counters and computing areas created in this way are initialized, by opposition to those
already present at time 0. Walls persist over time and are only destroyed under two circumstances:

• when it is in a situation such that it is impossible that it is initialized (e.g. without a time
counter to its left);
• at time Tn, if it is the left bound of a segment of length n.

If a segment is of length three at time 0, then the time counter of the rightmost wall is erased at
time 1 and the wall itself is destroyed at time 2. Thus segments have minimum length four from
time 2 onwards.
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3.2.2. Counters

All counters are binary in a redundant basis, so that they can be incremented by one at each step
(keeping track of current time) in a local manner.

De�nition 8 (Redundant binary). Let u = un−1 . . . u0 ∈ {0, 1, 2}∗. The value of u is

val(u) =

n∑
i=1

ui2
i.

Since the basis is redundant, di�erent counters can have the same value.

De�nition 9 (Incrementation). The incrementation operation inc : {0, 1, 2}∗ 7→ {0, 1, 2}∗ is de�ned
in the following way. If u|u|−1 = 2, then |inc(u)| = |u|+ 1, |u| otherwise, and:

inc(u)i =

 1 si i = |u|+ 1 and u|u|−1 = 2;
ui mod 2 + 1 if i = 0 or ui−1 = 2;
ui mod 2 otherwise.

Intuitively, the counter is increased by one at the rightmost bit and 2 behaves as a carry prop-
agating along the counter. When the leftmost bit is a carry, the length of the counter is increased
by one. Thus:

Fact 1. val(inc(u)) = val(u) + 1.

This operation is de�ned locally and can be seen as the local rule of a cellular automaton.

3.2.3. Time

We use the alphabet Atime = {0, 1, 2,#}. In a con�guration, a time counter is a word of maximal
length containing no # in the time layer. A time counter is attached if it is bounded on its right
by a wall W , detached otherwise.

???##?

##?###

######

#######

#######

########

########

#######

I

W

W

W

W

W

W

W

0

0

1

1

1

1

1

1

2

2

2

2

1021

002

001

01

1

Figure 3. A detached time counter, and a time counter attached to an initialized
wall. Only the time layer is represented. ? cells have arbitrary values.

At each step, attached counters are incremented by one while detached counters have their right-
most bit deleted (see Figure 3). Indeed, detached counters cannot be initialized and can be safely
deleted. Formally,
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• if u1 = W , then time(F (u)0) = time(u0) mod 2 + 1;
• if time(u1) = #, then time(F (u)0) = #;
• otherwise, follow the incrementation de�nition (De�nition 9).

When a counter increases in length, it can erase a wall. However, this is not a problem, as we
shall see in Facts 2 and 6.

Fact 2. An initialized wall cannot be erased by a detached time counter.

Proof. A detached counter is not incremented and can extend by one cell at most because of the
carries initially present in the word. But I symbols erase two cells to their right at initialization. �

Fact 3. Each attached time counter u in F t(a) satis�es val(u) ≥ t− 1, the equality being attained
if this counter is attached to an initialized wall.

Proof. No time counter is created except at t = 1 (by I ). Therefore such a counter was present
either in the initial con�guration (with a nonnegative value), or was created at t = 1 by a I symbol.
It is incremented by one at each step in both cases. �

Thus we can use time counters to tell apart initialized walls from non-initialized walls, which will
be the object of the next section.

3.2.4. Sweeping and comparisons

Sweeping counters are de�ned and incremented at each step in a similar way as time counters, but
they have a range of di�erent behaviors. The sweeping layer is decomposed into two layers Astate

and Avalue. A sweeping counter is a word of maximal length of state di�erent than #. The possible
states of the counter are:

�Go� state: The counter progresses at speed one to the right.
�Stop� state: Once a wall is encountered, the counter progressively (right to left) stops.
Comparison states: Once the whole counter has stopped, we locally compare the sweeping
counter and the time counter, left to right, with a method we will describe later.

The wall is destroyed if the sweeping counter is strictly younger, and the sweeping counter is de-
stroyed otherwise (see Figures 5 and 6). In the former case, the counter progressively returns to the
�Go� state.

Changing state takes some time to propagate the information along the counter. Therefore, coun-
ters passing from a �Go� state to a �Stop� state are temporarily in a situation where the left part of
the counter progresses whereas the right part does not. To avoid erasing information, counters in
a �Go� state have bu�ers, i.e. the value of the counter is only written on half the cells, the other
being erased when changing state (see Figure 4).

When its length increase, a counter will never merge with another counter, instead erasing bits
from the right-hand counter to avoid merging: we say the right-hand counter is dominated. Notice
that it is impossible for a counter located at the right of another counter to be initialized, and so it
is safe to erase bits of it.

Fact 4. Any non-dominated sweeping counter u of F t(x) satis�es val(u) ≥ t− 1, the equality being
attained if the counter is initialized (issued from a I symbol).

Proof. Similar to Fact 3. �

Thus, we guarantee that an initialized (hence non-dominated) sweeping counter is strictly younger
than any non-initialized wall, and symmetrically. As for dominated counters, whose value is arbi-
trary, we will see that they are erased before any comparison takes place.
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Figure 4. One initialized and one uninitialized sweeping counter. X symbols mark
the cells where values are prevented to appear to avoid merging: the right counter
is dominated. Only the sweeping layer is represented.

De�nition 10 (Comparison method). Let u = u0u1 . . . and v = v0v1 . . . be two counters in
redundant binary basis (adding zeroes so that |u| = |v|). Let us note sign(u− v) the result of the
comparison between u and v, that is, +, 0 or −.

Case 1: if |u| = |v| = 1, sign(u− v) = sign(u0 − v0);
Case 2: if u0 + bu1/2c > v0 + bv1/2c, then sign(u− v) = +,
and symmetrically;

Case 3: if u0 + bu1/2c = v0 + bv1/2c, then sign(u− v) = sign(u′1u2 · · · − v′1v2 . . . ),
where u′1 = u1 mod 2 and v′1 = v1 mod 2.

In other words, we do a bit-by-bit comparison starting from the leftmost bit, considering that
# = 0, and taking into account the carry propagation �in advance�, so that the incrementation
and carry propagation can continue during the comparison. If the result can be determined locally
(cases 1 and 2), the state is changed to + or −, and it will propagate to the right along the counter.
Otherwise (case 3), the state changes to =, which means future bit comparisons will decide the
result in the same way (see Figure 6).

After the comparison, two cases are possible:

• if the state of the rightmost bit is −, the wall is destroyed and the state of the rightmost bit
becomes �Go�. The counter then progressively returns to the �Go� state.
• if the state of the rightmost bit is + or =, it is erased. The remaining bits are progressively
erased similarly to detached time counters.

Notice that if the counter is dominated, then its leftmost bit is erased at each step, preventing the
comparison to start, until the counter is entirely erased.

Finally, we have Asweeping = {#} ∪ {Go} × {0, 1, 2,#} ∪ {Stop,+,−,=} × {0, 1, 2}.
When a sweeping counter reaches the right wall of the segment, the segment is said to be swept.

This implies all walls and auxiliary states remaining in the segment are initialized.

Fact 5. At time k(1 + dlog ke), all segments of length k are swept.
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Figure 5. A younger sweeping counter encountering an older wall. Only the state
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Figure 6. The comparison process in detail. Here the sweeping counter is older
than the wall and is destroyed. Only the layer Asweeping is represented.

Proof. As long as t ≤ k(1 + dlog ke), any initialized sweeping counter has less than 2dlog ke cells
containing a value. The counter progresses at speed one except when it meets another wall. Each
comparison takes a time equal to twice the current length of the counter. Furthemore, two consec-
utive walls are separated by three cells at least (cf. Section 3.2.1). Thus, the segment is swept in
less than k + k

4 · 2 · 2dlog ke steps, and we can check that t ≤ k(1 + dlog ke). �

Fact 6. An initialized wall cannot be erased by a time counter attached to a non-initialized wall.
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Proof. Consider two walls separated by k ≥ 3 cells, the left being initialized and the right non-
initialized. The value of the time counter attached to the right wall cannot exceed 2k−3 at t = 1
(since I erases three cells to its right), it will take more than 2k− 2k−3 steps before the left wall is
erased. According to Fact 5, the right wall will be destroyed in less than k(1 + dlog ke) steps, and
the time counter will take at most k more steps to be erased.
For k ≥ 5, k(1 + log k) + k ≤ 2k − 2k−3, so the counter is erased before it reaches the left wall.

For k = 4, there cannot be another wall between them, so the destruction time is actually less than
k + 2 log k + k ≤ 2k − 2k−3. For k = 3, the left I symbol present at time 0 erases the contents of
the three cells, which includes the time counter of the right wall. As explained in Section 3.2.1, the
right wall is then immediately destroyed. �

3.3. Computation and copy

3.3.1. Simulating a Turing machine in a cellular automaton

Let TM = (Q,Γ,#, q0, δ, QF ) be a Turing machine. We will show how to simulate this machine in
a cellular automaton F on the alphabet Γ× (Q∪#). The left part contains the content of the tape,
and the right part contains the state of the machine when the head is located on this cell, and #
everywhere else.
The local rule of F is governed by the rules of the machine, i.e., for all u ∈ AZ:

• if the head is on u0 and δ(u0) = (q, γ, ·), then F (u)0 = (q, γ);
• if the head is on u1, δ(u1) = (q, γ,←) and u0 = (#, γ′), then F (u)1 = (#, γ) and F (u)0 =

(q, γ′);
• similarly if the head is on u−1 and δ(u−1) = (q, γ,→);
• otherwise, F (u)0 = u0.

When starting from a con�guration �lled with # everywhere except for a �nite window with only
one head, the time evolution of the cellular automaton matches the one of the Turing machine.
When the machine has stopped (the state being in QF ), the local rule is the identity function.

3.3.2. Computation

Computation takes place in the area delimited by the time counter attached to the right wall. Acomp

is divided into three layers, on which three Turing machines are simulated. We use the alphabet
Acomp =

⊗3
i=1 Γi × (Qi ∪ #). Compared with the previous subsection, the Turing machines have

access to a limited space delimited by the time counter, and can read input from or write output
to another layer (when indicated).
We now describe the operations expected to be performed during the time interval [Tn−1, Tn]. At

time Tn−1, n is already written on the layer 1. The machines:

• replace n by n+ 1 on layer 1 and stops;
• compute wn on layer 2, outputting it on the main layer, and stops;
• compute Tn on layer 3, and stops;
• when t = Tn (t being read from the time layer), the copying process triggers and the next
computation starts, except when merging occurs; see next subsections.

All these operations must be performed in less than Tn − Tn−1 steps.
First we suppose that each wn can be computed in space

√
n, de�ning if necessary a new sequence

where each wn is repeated as long as there is not enough space to compute wn+1. Now �x Tn−Tn−1 =

qb
√
nc, taking the smallest q such that qb

√
nc ≥ Card(Γ2)

√
n ×
√
n × Card(Q2) where Γ2 and Q2

correspond to the Turing machine of layer 2. Indeed, this is the maximum time needed for any
computation using only space

√
n and these alphabets.

Moreover, at time Tn−1 the time counter is longer than log2(Tn−1)−1 ≥
√
n for q ≥ 5. For layers

1 and 3, the time and space bounds are veri�ed asymptotically, i.e. there are machines satisfying
18



these bounds for n > N . Let tN be the maximal time necessary for those machines to perform those
operations when n < N ; we can �x Tn+1 − Tn = tN when n < N , which has no in�uence on the
asymptotic behavior of Tn and ensures that the machines satis�es the time bound for any n. For
the space bound, it is always possible to compress the space by a constant factor (by grouping tape
cells) so that the space bound is satis�ed for n < N , with no impact on the computing.

Remark. We �x Tn to have a computation space of size
√
n at time Tn, so that it constitutes an

asymptotically negligible fraction of its segment. We could choose instead of
√
n any other easily

computable function which is o(n).

3.3.3. Copying

At time Tn+1 (n ≥ 0), wn has been output on the main layer. If the segment is not merging with
its right segment, the Turing machine triggers the copying process by copying the rightmost letter
of wn from the main layer to the copy layer.

First phase: Inside the time counter, the word on the copy layer progresses at speed -2, and
a letter at each step is copied from the main layer to the tail of the word;

Second phase: When the head is out of the time counter, the word keeps progressing at
speed -2 but the head loses one letter at each step and copies it on the main layer. The tail
keeps copying letters from the main layer.

Intuitively, the cellular automaton performs a catterpillar-like movement between the copy and
main layers (see Figure 7 for an example). The process ends when it meets a wall or a sweeping
counter to its left. Thus, Acopy = B ∪ {#}.
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Figure 7. Beginning of the copying process, with wn = 1101. Only the layers Acopy

and Amain are represented. The thick line is the limit of the time counter.

3.4. Merging of segments

At time Tn, all segments of length n merge with their left neighbor, so that the density of walls
tend to 0. To determine the length of each segment, a signal is sent to the right and bounces o�

19



the right wall, and its return time is measured.

To do so, a merging counter of value 2n is initilized at time Tn−1 on the merge layer. The
value of n is copied from the �rst computing layer to the merge layer (with an additional 0 at the
end), using an auxiliary state C (copy). This counter is decrementing at each step, similarly to
incrementing counters except it uses -1 as negative carry.

If the signal returns at the end of the decrementation, a symbol M (merge) is created on the
merge layer, to indicate the wall will be destroyed at next Tn; otherwise, the output will be copied in
the main layer as described above. Thus Amerge = {−1, 0, 1, M , C }×{→,←}∪{#}, see Figure 8
for an example of this process.
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Figure 8. Determination of the length of the segment. Here the right segment is
of length 3 and the wall merges at time T3. The counter of the right segment has
been omitted for clarity.

Fact 7. All left walls of segments of length k are erased simultaneously at time min(Tk, 2
k + k).

Proof. Except for the situation described above, the only other way for an initialized wall to be
erased is a time counter attached to an initialized wall, see Facts 2 and 6. A redundant binary
counter whose initial value is 0 reaches length k at time 2k + k (carry propagation).

�

We will consider from now on that n is large enough so that 2n + n > Tn.

3.5. Correctness of the cellular automaton

The operations described in the previous section have to be performed between time Tn and time
Tn+1 with high probability, which requires that the segments are not too large. In this section, we
control the length of segments at time Tn.
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Proposition 6. Tn = Θ(b
√
ncqb

√
nc) where q is de�ned in Section 3.3.2.

Proof. Tn =
∑n

k=1 Tk − Tk−1. Since asymptotically Tk+1 − Tk = qb
√
kc, and:

(2b
√
nc − 1)qb

√
nc−1 ≤

b
√
nc−1∑
k=1

(2k + 1)qk ≤
n∑
k=1

qb
√
kc ≤

b
√
nc∑

k=1

(2k + 1)qk ≤ (2b
√
nc+ 1)qb

√
nc+1.

the proposition follows. �

3.5.1. Acceptable segments

De�nition 11. Denote

Γtl,k =
{
x ∈ AZ : [0, l] is included in a segment of F t(x) of length k

}
Γtl,≥k =

⋃
i≥k

Γtl,i and Γtl = Γtl,≥1

Proposition 7 (Lower bound). Let µ ∈Mfull
σ−erg(AZ). For all l ∈ N, one has µ(ΓTnl,≥n) −→

n→∞
1.

Proof. At time Tn, no con�guration can contain a segment smaller than n. Since µ has full support,

µ
([

I
]⋂

i∈[1,n] σ
i
([

I
]))
6= 0. By σ-ergodicity, these segments of length larger than n exist for

µ-almost all con�gurations at t = 0, and those segments survive up to time Tn by construction.
Therefore, the cell 0 is µ-almost surely included in a segment at time Tn. Since this segment has

length larger than n and by σ-invariance, the probability that [0, l] crosses a border of the segment
tends to 0 as n tends to in�nity. �

De�nition 12. Let x ∈ AZ, [i, j] a segment at time t ∈ [Tn, Tn+1]. It is acceptable if j − i− 1 ≤
Kn =

√
Tn+1 − Tn. For n large enough Kn = q

b
√
nc
2 .

Proposition 8 (Upper bound). Let µ ∈Mfull
σ−mix(AZ). One has µ(ΓTnl,≥Kn) −→

n→∞
0, that is to say:

µ({x ∈ AZ : [0, l] is in an acceptable segment of F t(x)}) −→
t→∞

1

and the rate of convergence is exponential.

Proof. Any segment at time Tn corresponds, at time Tn−1, to a segment of arbitrary size plus an
arbitrary number of segments of size n (see Figure 8 for an illustration of this decomposition). For
l ≤ n, de�ne

∆t
n,α = {x ∈ AZ : starting from 0 there is a strip of α consecutive segments of size n in F t(x)}.
Suppose [0, l] is included in a segment longer than k at time Tn. Take L > 2n and distinguish

the two following cases:

• There were less than
⌊
L
n

⌋
segments of length n: then the other segment is larger than k−L.

By shifting the con�guration by L− l cells at most, we can ensure that [0, l] is included in
this segment. at time Tn−1.
• There were more than

⌊
L
n

⌋
segments of length n. Therefore there is a strip of

⌊
L
n

⌋
segments

of length n starting somewhere in [−k, k].

In other words,

ΓTnl,≥k ⊂
0⋃

i=−L+l
σi
(

Γ
Tn−1

l,≥k−L

)
∪

k−1⋃
j=−k+1

σj
(

∆
Tn−1

n,bLnc

)

µ
(

ΓTnl,≥k

)
≤ Lµ

(
Γ
Tn−1

l,≥k−L

)
+ 2kµ

(
∆
Tn−1

n,bLnc

)
(1)
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Thus we try to bound the value of µ(∆t
n,α). If x ∈ ∆t

n,α then for all i ∈ [0, α] one has xin = I

(corresponding to initialized walls at time t). For any m > 0, by considering one symbol out of
every m:

µ
(
∆t
n,α

)
≤ µ

 ⋂
i∈[0,α]

σin
([

I
])

≤ µ

 ⋂
i∈[0,b αm c]

σin·m
([

I
])

≤ (1 + ψµ(mn))b
α
m
cµ
([

I
])b α

m
c+1

.(2)

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

strip

m · n

n

time
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Figure 9. Illustration of the proof of Proposition 8 with α = 9 and m = 3.

Now take any M > n. Using (2) with m =
⌈
M
n

⌉
inside equation (1):

µ
(

ΓTnl,≥k

)
≤ Lµ

(
Γ
Tn−1

l,≥k−L

)
+ 2k

[
1 + ψµ

(
n ·
⌈
M

n

⌉)] L
M

µ
([

I
]) L

M
+1

≤ Lµ
(

Γ
Tn−1

l,≥k−L

)
+ 2k

[
(1 + ψµ(M))µ

([
I
])] L

M

Now, if k ≥ nL, we obtain by induction:

µ
(

ΓTnl,≥k

)
≤ Lnµ

(
Γ0
l,≥k−nL

)
+ 2kLn

[
(1 + ψµ(M))µ

([
I
])] L

M(3)

For the left-hand term, we have:

µ
(
Γ0
l,≥k−nL(x)

)
≤ µ

 ⋃
j∈[−k+nL,−1]

⋂
i∈[0,k−nL]

σj+i
([

I
])

≤ µ

 ⋃
j∈[−k+nL,−1]

⋂
i∈[0,b k−nL

n
c]

σj+in
([

I
])

≤ (k − nL)(1 + ψµ(n))b
k−nL
n
cµ
([

I
])b k−nLn c+1
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the second line being obtained by considering one symbol out of every n. PuttingM = n, L = n2
√
n,

and k = Kn in (3) then since ψµ(n) → 0, we have µ(ΓTn≥Kn) −→
n→∞

0 and the rate of convergence is

exponential. �

Remark. Remark that it is possible to take any value for Kn as soon as Kn = ω(n2
√
n).

3.5.2. Density of auxiliary states

Proposition 9. For t large enough, an acceptable segment is swept.

Proof. When Tn ≤ t < Tn+1, for an acceptable segment of length k, we have k(1 + log k) ≤
Kn(1 + log(Kn)) = o(Tn) by Proposition 6. Taking n large enough, we conclude by Fact 5. �

Proposition 10. Let µ ∈ Mfull
σ−erg(AZ) and u ∈ Bl for some �xed l. For a given segment length k

such that n+ 1 ≤ k ≤ Kn one has:

• If t ∈ [Tn + k, Tn+1],∣∣∣µ(F−t([u])|ΓTnl,k
)
− δ̂wn([u])

∣∣∣ = O

(
1√
n

)
;

• If t ∈ [Tn, Tn + k] one has∣∣∣∣µ(F−t([u])|ΓTnl,k
)
−
(
k − (t− Tn)

k
δ̂wn−1([u]) +

t− Tn
k

δ̂wn([u])

)∣∣∣∣ = O

(
1√
n

)
.
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Figure 10. Illustration of Proposition 10. The output is not correctly written in
dashed areas because of the destruction of a wall.

Proof. We write ΓTn[i,i+k] =
{
x ∈ AZ | [i, i+ k] is a segment at time Tn

}
, so that

ΓTnl,k =
−1⊔

i=−k+l
ΓTn[i,i+k+1] =

−1⊔
i=−k+l

σi(ΓTn[−1,k]) (disjoint union).

Suppose x ∈ ΓTn[−1,k]. Since such a segment is acceptable, it is swept, and any non-initialized counter

or wall has been destroyed. Since |wn| ≤
√
n (smaller than the computing space), the copying

process will use less than
√
n auxiliary cells.
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First point: The tail of the copying process progresses at speed one, so at time Tn + k the copy
of the word is �nished (since Tn + k ≤ Tn+1), and the segment is constituted only by copies of wn
except for the time counter and computation area (O(

√
n) cells) and a merging signal (one cell).

Therefore for all x ∈ ΓTn[−1,k], one has
∣∣∣Freq(u, F t(x)[0,k−1])− δ̂wn([u])

∣∣∣ = O(
√
n)

k = O
(

1√
n

)
, taking

into account the last copy of wn in the segment which can be incomplete (|wn| ≤
√
n), and since

k ≥ n. Thus we have ∣∣∣∣∣1k
k−1∑
i=0

µ
(
F−t([u]i) | ΓTn[−1,k]

)
− δ̂wn([u])

∣∣∣∣∣ = O

(
1√
n

)
.

Since µ is σ-invariant, µ
(
F−t([u]i) | ΓTn[−1,k]

)
= µ

(
F−t([u]0) | ΓTn[i,i+k+1]

)
. So:

µ
(
F−t([u]0) | ΓTnl,k

)
=

−1∑
i=−k+l

µ
(
F−t([u]0) | ΓTn[i,i+k+1]

)
· µ
(

ΓTn[i,i+k+1] | ΓTnl,k

)

=
1

k − l

−1∑
i=−k+l

µ
(
F−t([u]0) | ΓTn[i,i+k+1]

)
by σ-invariance and disjoint union of ΓTnl,k . The result follows.

Second point: When t ∈ [Tn, Tn + k], the copy is still taking place, with t − Tn cells containing
copies of wn and the rest containing copies of wn−1, except for: the computation part, the copy
auxiliary states, the merging signal, and possibly defects when a wall has been destroyed at time
Tn (there are at most k

n of them). Therefore∣∣∣∣Freq(u, F t(x)[0,k−1])−
(
k − (t− Tn)

k
δ̂wn−1([u]) +

t− Tn
k

δ̂wn([u])

)∣∣∣∣ =
1

k
O(
√
n) · k

n

1
kO(
√
n) · kn = O

(
1√
n

)
since k ≥ n. Using the same reasoning as the �rst point, we conclude.

�

3.5.3. Proof of Theorem 1 - �rst point

Let µ ∈Mfull
σ−mix(AZ) and u ∈ Bl+1. Since at time Tn there are no segment of length less that n, and

by Propositions 7 and 8, one has max
{
µ
(⋃

n≤k≤Kn Γtl,k

)
: Tn ≤ t < Tn+1

}
−→
n→∞

1 exponentially

fast. Therefore:

max
Tn≤t<Tn+1

F t∗µ([u])−
Kn∑
k=n

µ
(
F−t([u])|Γtl,k

)
µ
(
Γtl,k
)

= O

(
1√
n

)
.

and Γtl,k = ΓTnl,k since no segment is destroyed between Tn and Tn+1. By Proposition 10,

max
Tn≤t<Tn+1

∣∣∣∣∣F t∗µ([u])−
Kn∑
k=n

µ(ΓTnl,k)

(
max

(
0,
k − (t− Tn)

k

)
δ̂wn([u])

+ min

(
1,
t− Tn
k

)
δ̂wn−1([u])

)∣∣∣ = O

(
1√
n

)

max
Tn≤t<Tn+1

∣∣∣F t∗µ([u])−
(
fn(t)δ̂wn([u]) + (1− fn(t))δ̂wn−1([u])

)∣∣∣ = O

(
1√
n

)
.
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where fn is the piecewise a�ne function de�ned by

fn : [Tn, Tn+1] −→ [0, 1]

t 7−→
∑Kn

k=n max
(

0, k−(t−Tn)k

)
µ
(

ΓTnl,k

)
+ t−Tn

Tn+1−Tnµ
(

ΓTnl,>Kn

)
.

The second term is chosen so that fn(Tn) = 0 and fn(Tn+1) = 1, but it converges to 0 exponentially
and thus does not a�ect the equation. Therefore

max
Tn≤t<Tn+1

dM

(
F t∗µ,

[
δ̂wn , δ̂wn+1

])
= O

(
1√
n

)
.

Since fn is 1
n Lipschitz on [Tn, Tn+1], we deduce that

max
ν∈

[
δ̂wn ,δ̂wn+1

] dM (ν,{F t∗µ | Tn ≤ t < Tn+1

})
= O

(
1√
n

)
.

We conclude that V(F, µ) = V((wn)n∈N).

When wn is computable in space
√
n, by Proposition 6 we �nd that the rate of convergence is

dM
(
F t∗µ,V ((wn)n∈N)

)
≤ O

(
1

log(t)

)
+ sup

dM (ν,V ((wn)n∈N)) : ν ∈
⋃

n≥n(t)

[
δ̂wn , δ̂wn+1

] ,

where n(t) = Θ(log(t)2). We recall that wn can always be computed in space
√
n by repeating

elements.

3.5.4. Proof of Theorem 1 - second point

Assume that V((wi)i∈N) = {ν}, let F be the cellular automaton associated with this sequence as
described above, and consider µ ∈ Mfull

σ−erg(AZ). Since µ is not assumed to be ψ-mixing, Proposi-
tion 8 does not apply, and there is no guarantee most segments are acceptable. However, since µ is
ergodic, so is F t∗µ for all t, and µ(Γtl,≥k) −→

k→∞
0.

Claim 1: µ(F t(x)0 ∈ A\B) −→
t→∞

0, i.e., the density of auxiliary states tends to 0.

Proof. Suppose we are in an initial segment of length k. Detached time counters, Turing
machines and merging counters initially present are destroyed in less than k steps. Similarly,
left merging signals and copy auxiliary states initially present progress at speed -1, so they are
destroyed before time k. An uninitialized wall is destroyed after k(1 + log k) steps at most,
and any counter attached to it are destroyed after less than k more steps. For all those states,
the probability of apparition after time t = k(2 + log k) is less than µ(Γ0

≥k) −→
k→∞

0.

At time Tn, all segments are longer than n, so the density of initialized walls and of auxiliary

states that have been generated by them inside each segment is O
(

1√
n

)
.

Only uninitialized sweeping counters and right merging signals remain. Inside each segment,
call non-swept area the interval between the initialized sweeping counter of the left wall and
the rightmost cell containing one of those two states. At each step, this area decreases by one
cell to its right but may grow by one cell to its left. Notice that merging with other segments
cannot increase this area since segments of length n at time Tn are swept (see Figure 11).
At time Tn, a segment can contain a non-swept area longer than

√
n only if it is issued

from a segment longer than
√
n initially, and the non-swept area of other segments have

a density smaller than 1√
n
. By σ-invariance, µ({x ∈ AZ | x0 is in a non-swept area}) ≤

1√
n

+ µ(Γ0
≥
√
n
) −→
n→∞

0.
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Figure 11. Illustration of the last part of the proof of Claim 1. Slanted lines are
sweeping counters and grey areas are potentially non-swept.

time

Tn

Tn+1

Tn+2

k

k

wn−3

wn−2

wn−1

wn

wn+1

wn+2

Figure 12. Illustration of Claim 2. When t > Tn + k, a segment of length k is a
succession of stripes containing wn, wn+1, . . . plus a negligible part of auxiliary states
and defects.

Therefore, for a ∈ A\B, we have F t∗µ([a]) →
t→∞

0. 3 Claim 1

Claim 2: For any n ∈ N, we have for t large enough dM

(
F t∗µ,Conv

(
(δ̂wi)i≥n

))
−→
t→∞

0, where

Conv(X) is the convex hull of the set X.

Proof. Consider a segment of length k at time Tn. At time Tn + k the copying process for wn
will be �nished, but since the segment is not necessarily acceptable, other copying processes
may have started in the same segment. Therefore, the segment will be constituted by:
• a negligible number of auxiliary states;
• strips containing repeated copies of wn, then wn+1, wn+2. . . separated by ongoing copy
processes (the number of auxiliary copy states being negligible). See Figure 12.
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Since the density of auxiliary states tends to 0, and µ(ΓTnl,≥k) −→k→∞ 0, for all ε > 0 it is

possible to take k large enough so that dM
(
F Tn+k∗ µ,Conv((wi)i≥n)

)
< ε. 3 Claim 2

The second point of the Theorem 1 follows easily from Claim 2.

Remark. It does not follow from the last claim that the sequence (F t∗µ) is close to any of the δ̂wi
at any point, which is the reason why the result holds only for a single measure. This is why we
control the length of the segments in the proof of the �rst point, which requires ψ-mixing.

4. Related problems solved with this construction

In this section, we use the construction developed in Theorem 1 in view to solve natural problems
concerning accumulation point of the iteration of a cellular automaton on an initial measure.

4.1. Characterization of the µ-limit measures set

4.1.1. The connected case

Reciprocals of the computable obstructions described in Section 2 follow directly from Theorem 1.

Corollary 1. Let ν ∈Ms-comp
σ (BZ) be a semi-computable measure. There is an alphabet A ⊃ B and

a cellular automaton F : AZ → AZ such that for any µ ∈Mfull
σ−erg(AZ), one has limn→N F∗µ = ν.

This is in particular a full characterization of limit measures that are reachable from a computable
initial measure µ ∈Mfull

σ−erg(AZ).

Proof. Combine Proposition 1 with the �rst point of Theorem 1. �

Corollary 2. Let K ⊂ Mσ(BZ) be a compact, Σ2-computable and connected (Σ2-CCC) subset of
Mσ(BZ). There is an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that for any

µ ∈Mfull
σ−mix(AZ), one has V(F, µ) = K.

This is in particular a full characterization of connected µ-limit measures set that are reachable
from a computable initial measure µ ∈Mfull

σ−erg(AZ).

Proof. Combine Proposition 5 with Theorem 1. �

Open question 1. Is it possible to improve the speed of convergence?

4.1.2. Towards the non-connected case

In Corollary 2 it is assumed that the set is connected. It is due to the fact that in the construction of
Theorem 1, the words (wn)n∈N are copied progressively and not instantaneously on each segment,
so that we get the closure of an in�nite polygonal path, which is connected. However, we get
topological obstructions even if we consider a non-connected µ-limit measures set. For example, if
V(F, µ) is �nite one has the following proposition.

Proposition 11. Let F : AZ → AZ be a cellular automaton and µ ∈Mσ(AZ) such that V(F, µ) is
�nite. Then F∗ induces a cycle on V(F, µ).

Proof. Let d = min{dM(ν, ν ′) : ν, ν ′ ∈ V(F, µ) with ν 6= ν ′} and consider ν ∈ V(F, µ). It is

possible to extract a sequence (ni)i∈N such that dM(Fni∗ µ, ν) < d
3 and dM(Fni+1

∗ µ, ν) > 2d
3 . Since

dM(Fn∗ µ,V(F, µ)) −→
n→∞

0, we have dM(Fni∗ µ, ν) −→
i→∞

0. By continuity of F∗, dM(Fni+1
∗ µ, F∗ν) −→

i→∞
0.
One deduces that for all ν ∈ V(F, µ) there exists ν ′ ∈ V(F, µ) such that F∗ν = ν ′. So there is

k ∈ N such that V(F, µ) = {ν0, . . . , νk−1} and F∗νi = νi+1 where the addition is modulo k. �
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We exhibit some examples of more sophisticated behaviors based on the construction in The-
orem 1. The �rst one is a family of cellular automata where V(F, µ) is a �nite set of connected
components, which is a partial reciprocal of Proposition 11. The second one is a family of cellular
automata where V(F, µ) has an in�nite number of connected components. However these are not
total characterizations of the possible µ-limit measures sets.

Example 1 (Finite set of connected components). Suppose K = {ν0, . . . , νk−1} ⊂ Mσ(BZ) is a
�nite set of σ-invariant semi-computable measures such that Gνi = νi+1 for some periodic cellular
automaton G : BZ → BZ (Gk = Id). Then there is an alphabet A ⊃ B and a cellular automaton
F : AZ → AZ such that V(F, µ) = K for µ ∈Mfull

σ−erg(AZ). Indeed, let F be the cellular automaton

satisfying F t∗µ→ ν0 obtained by Theorem 1. consider the cellular automaton that applies G on the
main layer and applies the local rule of F once every k steps if an auxiliary state appears.
The same idea holds if K is a �nite union of Σ2-CCC sets which are mapped by a periodic cellular

automaton G : BZ → BZ.

Example 2 (In�nite set of connected components). We give some informal elements to modify the
construction of Theorem 1 to get examples of cellular automata where V(F, µ) has an in�nite number
of connected components. The construction uses the �ring squad cellular automaton (BFS, FFS)
which has the following properties: there exists four states

{
F , , , O

}
⊂ BFS such

that if x[0,n] = O
n−1

then F 2n
FS (x)[0,n] = F

n+1
and the state F does not appear in

(F iFS(x)j)(i,j)∈[0,n]×[0,2n−1][Maz96].

Consider a computable family (Ki)i∈N of Σ2-CCC subsets ofMσ(BZ) and assume that Ki∩Kj = ∅
for all i, j ∈ N. There is a computable sequence of words (wn)n∈N such that V((wn)n∈N =

⋃
i∈NKi.

De�ne w′n = wn × |wn| and consider the cellular automaton (AZ, F ) given by Theorem 1 which

produces V((w′n)n∈N), with A ⊃ B × BFS. We modify F to obtain F̃ in the following way.

• at time Tn, when the copy of wn is initiated, we initialize a counter on another layer to
count the length k of the segment;
• at time t = Tn+1− 2k, the state O appears on the left border of the segments (remember
that the time counter keeps track of time);
• All F symbols are immediatly transformed into symbols.

This requires the segments to be short enough, but the probability that [0, l] belongs to such a

segment tends to 1 as time tends to in�nity (see Remark 3.5.1). In those segments, F̃∗µ approximates

the measure δ̂wn × δ̂ F
at time Tn+1 and the measure δ̂wn × δ̂ at time Tn+1 + 1. The state F

appears only at times (Tn)n∈N.

For an initial measure µ ∈Mfull
σ−mix(AZ), one has V(F̃ , µ) = V×δ̂

F
∪K′ withK′ ⊂Mσ

((
BFS \ { F }

)Z)
,

which means it has an in�nite number of connected components.

Open question 2. Is it possible to characterize all compact subsets ofMσ(AZ) that can be reached
as µ-limit measures set of some cellular automaton when µ is computable?

4.2. Cesàro mean

In this section, by adapting the enumeration (wn), we are able to get some control over the set
V ′(F, µ) of limit points for the Cesàro mean sequence.

Corollary 3. Let B be a �nite alphabet and K′ ⊂Mσ(BZ) a Σ2-CCC set. There exists an alphabet

A ⊃ B, and a cellular automaton F : A → A such that for any µ ∈ Mfull
σ−mix(AZ), one has

V ′(F, µ) = K′.
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Remind that the latter is the set of limit points of the sequence ϕFt (µ) = 1
t+1

∑t
i=0 F

i
∗µ. V ′(F, µ)

is necessarily connected (becauseM(AZ) is metric and compact), and if we suppose that the initial
measure µ is computable, we obtain a full characterization of reachable subsets K′.

This corollary is a consequence of the following stronger result, where we have control over both
V(F, µ) and V ′(F, µ).

Corollary 4. Let B be a �nite alphabet and K′ ⊂ K ⊂ Mσ(BZ) two Σ2-CCC sets. There exist an

alphabet A ⊃ B, and a cellular automaton F : A → A such that for any µ ∈Mfull
σ−mix(AZ), one has

• V(F, µ) = K;
• V ′(F, µ) = K′.

V ′(F, µ) is necessarily included in the convex hull of V(F, µ). Here we need a stronger hypothesis,
namely, that it is included in V(F, µ). Therefore, if we suppose the initial measure is computable,
this is a characterization of reachable pairs of connected subsets (K,K′) such that K′ ⊂ K.

Proof. We will use notations from the proof of Proposition 5. Notably (wn)n∈N and (w′n)n∈N are the
computable sequences of words associated to K and K′, respectively, and Vk and Vt

k are de�ned
with regard to K. Without loss of generality, suppose that max(|wn|, |w′n|) ≤

√
n for all n (repeating

some words if necessary).

We will de�ne a new sequence of words (w′′n)n∈N in the following manner, using a similar method
as Proposition 5. For n ∈ N, let in be the maximal value such that one can �nd a path wn =
u0, u1, . . . , ul = w′n, ul+1, . . . , ul′ = wn+1 with u1, . . . ul−1, ul+1, . . . , ul′ ∈ V t

in
and dM(uk, uk+1) ≤

4b(in).
Let Pn : [0, pn] → Vt

in
such a path. Since there are less than |A|in elements in Vt

in
, this path is

of length pn ≤ 2|A|in ≤ 2|A||wn| < 2|A|n.

For n ∈ [|A|i2 , |A|(i+1)2 ], we de�ne:

- if n < |A|i2 + pi, w
′′
n = Pi(n− |A|i

2
);

- otherwise, w′′n = w′i+1.

and let F be the CA de�ned as in Theorem 1. Since all elements of (wn)n∈N are enumerated as
in Proposition 5, we have V(F, µ) = V((w′′n)n∈N) = K.

0 T|A|i2 T|A|i2+pi T|A|(i+1)2

A

w′i−1

B C

w′i

Figure 13. Intuitively, we prove A+B � C, then B � A.

We have
|A|n2

+ pn

|A|(n+1)2 − (|A|n2 + pn)
<

|A|n2+1

|A|(n+1)2 − |A|n2+1
−→
n→∞

0.

In other words, the subset [0, |A|n2
+ pn] is (asymptotically) of negligible density in [0, |A|(n+1)2 ].

Since Ti+1−Ti is an increasing sequence, the subset [0, T|A|n2+pn ] is of negligible density in [0, T|A|(n+1)2 ].

This means that, putting tn = T|A|(n+1)2 , d(ϕFtn(µ), δ̂w′n+1
) −→
n→∞

0.
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Furthermore, notice that for x, y ∈ R+, when y ≤
√
x, we have b

√
x+ yc ≤ b

√
xc + 1 and

b
√
x− yc ≥ b

√
xc − 1. Thus :

T|A|n2+pn − T|A|n2 < q|A|
n2

2 +1 · |A|n.

T|A|n2 > T|A|n2 − T|A|n2−|A|n
2
2
> q|A|

n2

2 −1 · |A|
n2

2

where q is de�ned in Section 3.3.2 and therefore

T|A|n2+pn − T|A|n2
T|A|n2+pi

−→
n→∞

0.

This means that, when t′n = T|A|n2+pn , d(ϕFt′n(µ), δ̂w′n) −→
n→∞

0.

The Cesàro mean sequence ϕFt (µ) is (asymptotically) close to δ̂w′n between times tn and t′n, and

is close to δ̂w′n+1
at time tn+1. Therefore, it is close to the segment [δ̂w′n , δ̂w′n+1

] between times tn
and tn+1. We conclude that asymptotically, the sequence is close to V((w′n)), and thus its set of
limit points is K′. �

Open question 3. Is it possible to extend Corollary 4 when K′ is not included in K?

Using Example 1 we can only provide some examples where V(F, µ) ∩ V ′(F, µ) = ∅.

4.3. Decidability consequences

We give an undecidability result extending a result of Delacourt on µ-limit sets [Del11].

Corollary 5 (Rice theorem on µ-limit measures sets). Let P be a nontrivial property on non-empty
Σ2-CCC sets ofMσ(BZ) (i.e. not always or never true). Then it is undecidable, given an alphabet

A and a CA F : AZ → AZ, whether V(F, µ) satis�es P for µ ∈Mfull
σ−mix(BZ).

Proof. We proceed by reduction to the halting problem. Since P is nontrivial, let K1 and K2 be
two Σ2-CCC sets that satis�es and does not satisfy P , respectively. By Proposition 5, there exists
two computable sequences of words (wn)n∈N, (w

′
n)n∈N ∈ (A∗)N such that K1 = V((wn)n∈N),K2 =

V((w′n)n∈N).
Now let TM be a Turing machine. De�ne the sequence (w′′n)n∈N in the following way.

• If TM halts on the empty input in less than n steps, w′′n = wn.
• Otherwise, w′′n = w′n.

This sequence is computable by simulating n steps of the Turing machine and computing the
corresponding sequence. Therefore, we can use the previous construction to build a CA F such
that V(F, µ) = V((w′′n)n∈N). If TM halts on the empty input, then w′′n = wn for n large enough;
otherwise, w′′n = w′n for n large enough. Thus, V(F, µ) satis�es P if and only if TM halts. �

The same reasoning holds for a single limit and the Cesàro mean sequence.

Corollary 6 (Rice theorem on single limit measures). Let P be a nontrivial property onMs-comp
σ (BZ).

Then it is undecidable, given an alphabet A and a CA F : AZ → AZ, whether F t∗µ → ν where ν

satis�es P for µ ∈Mfull
σ−erg(BZ).

Corollary 7 (Rice theorem on Cesàro mean µ-limit measures sets). Let P be a nontrivial property
on non-empty Σ2-CCC sets of Mσ(BZ). Then it is undecidable, given an alphabet A and a CA

F : AZ → AZ, whether V ′(F, µ) satis�es P for µ ∈Mfull
σ−mix(BZ).
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4.4. Computation on the set of measures

In this section the construction developed in Section 3 is modi�ed to perform computation on the
space of probability measures. In other words, we want the µ-limit measures set to be a function of
the initial measure.

4.4.1. Computation with oracle

The obstructions of Section 2 can be generalized to the case where the initial measure is not
computable, by considering computability with an oracle µ ∈Mσ(AZ).
A Turing machine with oracle inM⊂Mσ(AZ) has the same behavior as a classical Turing

machine, except that an oracle µ ∈M is �xed prior to computation. It can query the oracle during
the computation by writing u ∈ A∗ and n ∈ N on an additional oracle tape and entering a special
oracle state. After one step, the oracle returns an approximation of µ([u]) up to an error 2−n and
the computation resumes.
LetM ⊂Mσ(AZ) and X,Y two enumerable sets. A function f :M×X → Y is computable

with oracles in M if there exists a Turing machine with oracle inM which takes as input x ∈ X
and returns y = f(µ, x) ∈ Y , up to reasonable encoding.

De�nition 13. LetM⊂Mσ(AZ).
A function ϕ : M −→ Mσ(BZ) is computable in M if there exists f : M × N −→ B∗ a

computable function with oracle inM such that |ϕ(µ)− δ̂f(µ,n)| ≤ 2−n. This is an extension of the
previous de�nition where the image is not countable, hence the abuse of notation.
A function ϕ : M −→ Mσ(BZ) is semi-computable with oracle in M if there exists f :

M× N −→ B∗ a computable function with oracle inM such that δ̂f(µ,n) −→
n→∞

ϕ(µ).

A sequence of functions (fn :M×Mσ(AZ) −→ R)n∈N is a computable sequence of functions

with oracle in M if

• there exists a :M×N×N×A∗ −→ Q computable with oracle inM such that
∣∣∣fn(µ, δ̂w)− a(µ, n,m,w)

∣∣∣ ≤
1
m for all µ ∈M, w ∈ A∗ and n,m ∈ N;

• there exists b :M× N −→ Q computable with oracle inM such that dM(ν, ν ′) < b(µ,m)
implies |fn(µ, ν)− fn(µ, ν ′)| ≤ 1

m for all µ ∈M and n,m ∈ N.
Let K be a set of compact subsets of Mσ(BZ). A function Ψ : M −→ K is Σ2-computable if

there exists a computable sequence of functions (fn : M×Mσ(BZ) −→ R)n∈N with oracle in M
such that fµ(ν) = limn→∞ fn(µ, ν) for all µ ∈M and ν ∈Mσ(BZ) and Ψ(µ) = f−1µ ({0}).

The proofs of Section 2 can be easily adapted in this framework. For any cellular automaton F
on AZ, one has:

• following Proposition 2, the function µ 7−→ F∗µ is computable with oracle inMσ(AZ);
• following Proposition 4, µ 7−→ V(F, µ) and µ 7−→ V ′(F, µ) are Σ2-computable with oracle in
Mσ(AZ);
• following Proposition 5, if Ψ :M−→ K is a Σ2-computable function with oracle inM and if
every element of K is connected, then there exists a computable function f :M×N −→ A∗
with oracle in M such that Ψ(µ) = V((f(µ, n))n∈N) (closure of the limit points of the
polygonal path).

4.4.2. Towards a reciprocal

In this section, we give a partial reciprocal to the last fact. To use the initial measure µ ∈Mσ(AZ)
as an oracle, we need to keep some information from the initial con�guration. We adapt the original
construction in the following way:
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Each segment keeps a sample of the initial con�guration, using the frequency of patterns inside
this sample as an oracle in the computation. We need to ensure that the frequency of a pattern
u ∈ Ak in this sample is close to µ([u]) with a high probability. For µ ∈ Mfull

σ−mix(AZ) we have an
exponential rate of convergence for every length (Theorem III.1.7 of [Shi96]). More precisely:

µ

({
x ∈ AZ : max

u∈Ak
{|µ([u])− Freq(u, x[0,n])| ≥ ε}

})
≤ (k +m)ψ(m)

n
k

(n
k

+ 1
)Card(A)k

2−
ncε2

4k ,

where m ∈ N, c > 0.
However, in our case, not all the information in the initial con�guration can be kept since sweeping

destroys information in the segment. In all the following, we will only keep information about the
density of I symbols. It would actually be possible to adapt the construction and keep information
on longer words, only considering the positions of I symbols.

Theorem 2. Let Ψ : Mfull
σ−mix({0, 1}Z) → K be a Σ2-computable function where K is a set of

compact connected subsets ofMσ(BZ). Assume that Ψ(µ) = Ψ(µ′) if µ([ I ]) = µ′([ I ]) for µ, µ′ ∈
Mfull

σ−mix({0, 1}Z).

There exists a cellular automaton (AZ, F ) such that V(F, µ) = Ψ(πµ) for all µ ∈ Mσ−mix(AZ),
where π is a 1-block map de�ned by π(x)i = 1 when xi = I , and π(x)i = 0 otherwise.

Notice that since only one density is considered, it would be equivalent in this case to consider a
Σ2-computable function R→ K.

Proof. Let f :Mfull
σ−mix({0, 1}Z)×N −→ A∗ be a computable function with oracle inMfull

σ−mix({0, 1}Z)
such that Ψ(µ) = V((f(µ, n))n∈N) and consider the associated Turing machine with oracle.
Let F be the cellular automaton de�ned in Theorem 1. We add a new layer Aoracle in which

each segment at time t stores the frequency of the state I in this segment at time 0. To do that,
we modify the construction in the following way:

• We subdivide the layer Aoracle in two parts, on which each wall W keeps on its left:
� the �rst counter for the number of I symbols that have been destroyed in its left
segment;

� the second counter for its length, worth 0 if the segment is not swept.
• Another counter accompanies each sweeping counter, measuring the length of the segment
as it progresses.
• The second counter is initialized as 0. When the time counter attached to this wall makes
a comparison with an initialized sweeping counter (the comparison returns the result �=�),
the second counter stores the length of the segment. It may take the value 0 again after
merging with a non-swept segment (see below).
• When a wall is destroyed by a merging process, it sends to its right a signal at speed 1
containing all the stored information. Such a signal should not cross a sweeping counter, so
it is slowed down if necessary.
• When a wall has stored (c1, c2) as oracle and receives the signal (c′1, c

′
2) from its left, there

are three cases:
� If c2 = 0, the left segment was not swept, the signal cannot come from an initialized
wall and can be safely ignored. The oracle remains (c1, c2).

� If c2 6= 0, the information comes from an initialized wall. Put c′′1 = c1 + c′1 + 1 to take
the merging into account. If c′2 = 0, the segment just merged with a non swept segment
and c′′2 = 0; otherwise c′′2 = c2 + c′2. The new oracle is (c′′1, c

′′
2).

See Figure 14. We remark that if the length of the segment is k, the information can be
coded in space log(k), and it is possible to actualize the values before another signal can
come from the left.
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time

Tn

0, 0 0, 0 0, 00, 0 0, 0 0, 0

0, k

0, n 0, n 0, n

1, 2n

2, 2n+ k

1, 0

k n

Figure 14. Each wall has its counter displayed when its value changes. Slanted
thick lines are sweeping counters, dotted lines are signals transmitting information.

• If two symbols I are too close in the initial con�guration, they are destroyed by the
bootstrapping process (see Section 3.2.1). If a I is in a group of I separated by two
cells or less, the rightmost I sends a sweeping counter and the leftmost one starts a time
counter. Thus a group of I separated by two cells or less behave as a single symbol for
initialization purposes. All the I except the leftmost one are transformed immediately into
oracle signals (supposing the basis of the counter is larger than 3 then they occupy only one
cell) and the other cells present initially are erased.
• The Turing machine simulation described in Section 3.3.2 can be adapted to simulate a
Turing machine with oracle. When there is an oracle query for the value of µ([ I ]) with the
precision 2−i at time t ∈ [Tn, Tn+1], there are two possibilities:

� if n−
1
6 ≤ 2−i, the Turing machine uses the information stored in the oracle layer to

return the frequency of I on the segment at time 0, and this corresponds to an
approximation of µ([ I ]) with su�cient precision;

� if n−
1
6 > 2−i, the computation stops, and the last word successfully computed is output.

The same thing happens until a time when enough information is available.

Let us check that V(F, µ) = Ψ(πµ) for µ ∈Mfull
σ−mix(AZ). It is clear that the density of auxiliary

states tends to 0, so if the sample approximates correctly µ([ I ]), the sequence of words (wn)n∈N
produced by the cellular automaton correspond to (f(µ, n))n∈N up to some repetition. Thus we
only need to prove that the probability that a cell belongs to a segment which sample correspond
to a �bad� approximation tends to 0 when t tends to ∞. Recall that ΓTn[i,j] = {x ∈ AZ | [i, j] is a

segment at time Tn}.

Bn = µ
({
x ∈ AZ : x0 belongs in a segment with a �bad� sample at time Tn

})
=

∑
i<0,j>0

µ
({
x ∈ ΓTn[i,j] : |µ([u])− Freq(u, x[i,j])| > n−

1
6

})
=

∑
k>0

k · µ
({
x ∈ ΓTn[0,k] : |µ([u])− Freq(u, x[0,k])| > n−

1
6

})
,
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by σ-invariance. By restricting ourselves to n ≤ k ≤ Kn:

Bn ≤ µ
(

ΓTn0,≥Kn

)
+

Kn∑
k=n

k · µ
({
x ∈ AZ : |µ([u])− Freq(u, x[0,k])| > n−

1
6

})
≤ µ

(
ΓTn0,≥Kn

)
+K2

n(1 +m)ψ(m)n (n+ 1)Card(A) 2−
c
4
n

2
3

−→
n→∞

0.

The result follows.
�

This result may seem surprising since the same cellular automaton has very di�erent asymptotical
behaviors depending on the initial measure.

Open question 4. Is it possible to improve Theorem 2 and characterize functions Ψ :Mfull
ψ−mix({0, 1}

Z)→
K, where K is a set of compact subsets of Mσ(BZ), that are realisable as the action of a cellular
automaton F in the sense that for all µ, V(F, µ) = Ψ(µ)?

5. Removing the auxiliary states

In this section, our aim is to carry the previous results to the case where the cellular automaton
does not use auxiliary states. A straightforward extension is impossible: for example, consider ν
a semi-computable measure with full support and F : AZ → AZ a cellular automaton such that
F∗µ → ν for any �simple� measure µ. Since ν has full support, F is a surjective automaton, and
hence the uniform Bernoulli measure is invariant under F∗. Thus ν must be the uniform Bernoulli
measure.

However, if the limit measure does not have full support, the previous results can be extended
by using a word not charged by the measure to encode the auxiliary states in some sense.

Theorem 3. Let (wn)n∈N be a computable sequence of words of B∗, where B is a �nite alphabet, and
assume there exists a word u that does not appear as factor in any of the wn. Then there is a cellular

automaton F : BZ → BZ such that for any measure µ ∈Mfull
σ−mix(BZ), V(F, µ) = V((wn)n∈N).

Proof. Let A be the alphabet and F be the CA associated to the sequence (wn)n∈N by Theorem 1.
Our aim is to provide an encoding of any con�guration of AZ in BZ and a cellular automaton F ′

that behaves similarly to F after encoding.

Denote Ud ⊂ Bd be the set of words of length d beginning with u, that do not contain u as factor
(except at the �rst letter), and that do not end with a pre�x of u. #(Ud) −→

d→∞
∞, so for d large

enough, we can �nd an injection ϕ : A\B → Ud (encoding the auxiliary states), and we extend it
by putting ϕ = Id on B. For a �nite word, we de�ne ϕ(u1 . . . un) = ϕ(u1) . . . ϕ(un), and this can
be naturally extended further to con�gurations Φ : AZ 7→ BZ by considering that ϕ(a0) starts on
the column zero.

Let T ⊂ AZ be the set of con�gurations such that the word u does not appear on the main layer
(T is a subshift of �nite type). Since u marks unambiguously the beginning of a word of ϕ(A\B),
the restriction Φ : T→ BZ is injective.
Each con�guration from BZ can thus be divided uniquely into words from ϕ(A), that we will

call clusters from now on. Output cells are elements of B = ϕ(B) that occupy only 1 cell
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(corresponding to (b,#,#,#,#,#) for b ∈ B in the previous construction) and auxiliary clusters
are elements of ϕ(A\B) that occupy d cells while containing one letter of output. Thus we can
de�ne a decoding Ψ : BZ → T such that Ψ ◦ Φ = Id.
However, Φ and Ψ are not σ-invariant, so Φ ◦ F ◦Ψ is not a cellular automaton. We must build

manually a cellular automaton on BZ that behaves in roughly the same way as Φ ◦F ◦Ψ. Provided
the neighborhood is larger than [−4d, 4d], each cell can �read" the cluster in which it belongs, and
the three clusters to its right and left.
If a word u appears outside of an auxiliary cluster, it is replaced by some output cells and can

never be created again. To avoid creating an auxiliary cluster by mistake, we �x to this purpose a
letter b ∈ B such that bd /∈ Ud. Similarly, auxiliary clusters that are destroyed for any reason leave
behind them output b cells.

Remark. For clarity, in all diagrams of this section, we suppose that B = {0, 1}, d = 3 (it would
be much larger in real implementations) and we represent auxiliary clusters as blocks with layers,
instead of words from Bd. Also we �x b = 0 in the de�nition above.

The di�erent parts of the construction are modi�ed in the following way.

• I and W clusters, time counters, and Turing machines have the same behavior as in the
previous construction. However, since the counters take more space, it is necessary to erase
3d cells to the left and right of each I cluster at time 0.
• The tail of copying process progresses to the left at speed one, and behaves normally as long
as it does not meet another auxiliary state (see Figure 15).
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Figure 15. End of the copying process described in Figure 7, copying 1101.

• Sweeping counters progress to the right at speed d. This is too fast to keep the output
information, so the counter leaves behind output cells b de�ned above. Any moving signal it
meets (e.g. copying process or length signal) is destroyed. When entering the time counter,
if it cannot progress by d cells exactly, it is o�set by less than d cells (see Figure 16). Thus
sweeping clusters separated by small o�sets are still considered to be the same counter.
• Merging signals which determine length of segments also progress at speed d. To avoid being
o�set by copying processes (which would modify the �measured length�), the determination
of length starts only after the copy is �nished. Thus the signal is only o�set once, when
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Figure 16. A sweeping counter gets o�set when entering the time counter area.
Notice the auxiliary clusters being replaced by output cells containing zeroes.

entering the time counter area. After bouncing o� the right wall, it returns to the left wall
where its o�set can be measured. If it takes t0 steps to return with an o�set of α, then
the segment has length t0

2 · d + α (see Figure 17). On the left side of the wall, a Turing

machine computes the measured length and compares it with n, and a M symbol is created
if needed.
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Figure 17. Determination of length. Here d = 3, t0 = 8 and o = 1, for a measured
length of 13.

The bootstraping and sweeping processes work essentially in the same way as previously, except
that a sweeping counter erases any copy process and merging signal it meets, along with output
information. Hence Propositions 9 and 8 can be extended. Furthermore, at time t, with Tn ≤ t <
Tn+1, the copy process followed by the process of determination of length for segments of size n+ 1
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still take less than Tn+1 − Tn steps. Hence the proof in section 3.5.3 can be extended, and the
theorem follows. �

However, because of the destructive nature of the sweeping counter, the proof in Section 3.5.4
cannot be adapted and we cannot weaken the hypothesis to µ ∈Mfull

σ−erg(BZ) when K is a singleton.
Since this result is a counterpart to the second point of Theorem 1 that does not use auxiliary
states, it is natural to give similar counterparts to corollaries 2 to 7.

De�nition 14. A word u ∈ A∗ is said to be not charged by a set K ∈ Mσ(AZ) if for all ν ∈ K,
ν([u]) = 0.

Corollary 8. Let K ⊂ Mσ(BZ) be a non-empty Σ2-CCC subset of Mσ(BZ) that does not charge
a word u ∈ B∗. Then there is a cellular automaton F : BZ → BZ such that for any measure

µ ∈ Mfull
σ−mix(BZ), V(F, µ) = K. In particular, any semi-computable measure which does not have

full support can be obtained this way.

Proof. Since K does not charge u, we can assume without loss of generality that no word in the
computable sequence (wn)n∈N associated toK by Proposition 1 contains u as factor. Thus Theorem 3
applies. �

The proofs of the following corollaries are adaptations of the proofs of their counterparts using
Theorem 3. Corollary 1 does not have a counterpart since its proof uses the �rst point of Theorem 1.

Corollary 9. Let K′ ⊂ K ⊂Mσ(BZ) two non-empty Σ2-CCC sets that both do not charge the same

word u ∈ B∗. Then there exists a cellular automaton F : B → B such that for any µ ∈Mfull
σ−mix(AZ),

• V(F, µ) = K;
• V ′(F, µ) = K′.

Corollary 10 (Rice theorem on µ-limit measures sets). Let B be an alphabet, µ ∈ Mfull
σ−mix(BZ),

u ∈ B∗, and P be a nontrivial property on non-empty Σ2-CCC sets that do not charge u. Then it is
undecidable, given a CA F : BZ → BZ, whether V(F, µ) satis�es P .

This result extends to single measures and Cesàro mean µ-limit measures set, in a similar way
as Corollaries 6 and 7.

We leave open in particular the case of limit measures with full support. For corollaries 8 and
9, solving this case would imply to characterize the possible asymptotic behaviors of surjective
automata, for which a similar construction seems di�cult. As for Corollary 10, if we �x µ the
uniform Bernoulli measure, the problem of whether V(F, µ) contains only the uniform Bernoulli
measure is equivalent to the surjectivity of F , which is decidable [AP72]. Hence the question
of which nontrivial properties on limit measures and µ-limit measures sets with full support are
decidable remains open.

Open question 5. Which sets of measures are reachable by surjective cellular automata?
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