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Abstract. We show the following geometric generalization of a classical theorem of W.H. Gottschalk and

G.A. Hedlund: a skew action induced by a cocycle of (affine) isometries of a Hilbert space over a minimal

dynamics has a continuous invariant section if and only if the cocycle is bounded. Equivalently, the

associated twisted cohomological equation has a continuous solution if and only if the cocycle is bounded.

We interpret this as a version of the Bruhat-Tits center lemma in the space of continuous functions. Our

result also holds when the fiber is a proper CAT(0) space. One of the appplications concerns matrix

cocycles. Using the action of GL(n,R) on the (nonpositively curved) space of positively definite matrices,

we show that every bounded linear cocycle over a minimal dynamics is cohomologous to a cocycle taking

values in the orthogonal group.
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1 Introduction

Over the last years, the study of cocycles has been a central subject in many branches of Math-
ematics including not only Dynamical Systems and Group Theory, but also Geometry, Foliations
and Mathematical Physics. This work uses ideas and techniques coming from the former two areas
to deal with cocycles above a minimal dynamics and taking values in the group of isometries of a
nonpositively curved space.

In a general form, a cocycle associated to a dynamics on a base space is a map into a group
G that is equivariant with respect to this dynamics. These data naturally induce a skew action
on a (perhaps nontrivial) fiber bundle, where the fibers are isomorphic to the phase space of the
action of G. The possibility of “reducing” this fibered dynamics is related to a central problem,
namely solving an associated cohomological equation. Since we are interested in the possibility
of reducing our cocycles into cocycles taking values in some compact group, we concentrate on
skew actions satisfying a natural geometric counterpart, namely, a boundedness property. Before
stating our main (somewhat technical) result, we prefer to illustrate its consequences giving several
applications.

A matrix version of the Gottschalk-Hedlund theorem. Let Γ be a semigroup acting min-
imally by homeomorphisms of a compact metric space X . Let A be a linear cocycle above this
action, that is, a continuous map A : Γ × X → GL(n,R) satisfying A(fg, x) = A(f, g(x))A(g, x)
for all x ∈ X and all f, g in the acting semigroup Γ.

Theorem A Assume that there is a point x0 ∈ X and a constant C > 0 such that for all f ∈ Γ,

max
{
∥

∥A(f, x0)
∥

∥,
∥

∥A(f, x0)
−1
∥

∥

}

≤ C.

Then A is cohomologous to a cocycle Ã : Γ×X → O(n,R), that is, for a certain continuous map
B : X → GL(n,R), one has B(f(x))−1A(f, x)B(x)= Ã(f, x)∈O(n,R) for all x∈X and all f ∈Γ.

This theorem generalizes a classical result of W.H. Gottschalk and G.A. Hedlund [9], which
essentially corresponds to the case n = 1. Indeed, Gottschalk and Hedlund considered cocycles
into the (commutative) group R, which fits in our framework by looking at a real number λ as the
1-dimensional linear map given by multiplication by eλ; see §3 for more details.

Thereom A should also be compared with Kalinin’s recent remarkable extension of Livšic’s
theorem to matrix cocycles [13]. In his setting, the base dynamics is given by that of an Anosov
diffeomorphisms T . Given a Hölder-continuous cocycle A above this dynamics, the condition for
its cohomological triviality, that is, for the existence of a Hölder-continuous B : X → GL(n,R)
such that A(T, x) = B(Tx)B(x)−1 holds for all x ∈ X , is that the products of A along periodic
orbits is trivial:

T n(x) = x =⇒
n−1
∏

i=0

A
(

T, T i(x)
)

= Id.

In view of the method of proof of our Theorem A (see §4.1), it is natural to ask whether the
Kalinin-Livšic theorem admits a version for cocycles taking values in the group of isometries of a
nonpositively curved space.
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A criterium of conformality à la Sullivan-Tukia. Let again Γ be a semigroup acting minimally
on a compact metric space X , and A : X → GL(n,R) a cocycle above this action. Recall that the
quasiconformal distortion of the linear map A(f, x) is defined as

KA(f, x) :=
∥

∥A(f, x)−1
∥

∥ ·
∥

∥A(f, x)
∥

∥.

Roughly, this measures how distorted is the image under A(f, x) of a ball centered at the origin.

Theorem B If there exists a point x0 ∈ X and a constant C > 0 such that KA(f, x0) ≤ C holds
for all f ∈ Γ, then there is a continuous invariant conformal structure on the bundle X×Rn. More
precisely, the cocycle A is cohomologous to a cocycle taking values in the subgroup of conformal
linear maps.

This result should be compared with a theorem independently due to Sullivan [29] and Tukia [30]
(compare also [19]), according to which every uniformly quasiconformal group of diffeomorphisms
of a 2-manifold is quasiconformally conjugated to a group of conformal maps. Indeed, the first
step for the proof of this theorem consists in finding an invariant conformal structure; the Ahlfors-
Bers integrability theorem then allows obtaining the conjugacy. It should be pointed out that
B. Kalinin and V. Sadovskaya obtained in [14] an analogous result for linear cocycles over an
hyperbolic dynamics in the spirit of Livšic’s theorem.

A Bruhat-Tits’ lemma in the space of continuous and bounded functions. A very useful
lemma due to Bruhat and Tits states that every action by isometries of either a proper CAT(0)
space or a Hilbert space that has a bounded orbit must have a fixed point. Although this still holds
for actions on Lp spaces for 1 < p <∞, this is no longer true for actions on spaces of continuuous
functions (see Example 2) and subspaces of L1 spaces (see [3, Example 2.23]). We next concentrate
on the former case in a more general situation.

Let X be a compact metric space, H a (real) separable Hilbert space, and C(X,H) the space
of continuous functions on X with values in H. In order to discuss affine isometric actions on
C(X,H), we need to recall a classical result [6].

Theorem (Banach-Stone) If π is a linear surjective isometry of C(X,R), then there exist a
unique homeomorphism T : X 7→ X and a unique continuous function sgn : X 7→ {−1,+1} such
that for every ϕ ∈ C(X,R), one has π(ϕ)(x) = sgn(x)ϕ(T−1(x)).

An almost direct consequence of this theorem is that every action of a group Γ by linear
isometries of C(X,R) comes from an action on the basis X together with a cocycle sgn : Γ×X 7→
{−1,+1}:

f : ϕ(·) 7→ sgn
(

f, f−1(·)
)

ϕ
(

f−1(·)
)

.

Here, the cocycle equality is sgn(fg, x) = sgn(f, g(x))sgn(g, x). Moreover, the function sgn must
be continuous on the variable x.

An analogous statement holds in the space C(X,H) (the corresponding version of the Banach-
Stone theorem is provided by [11]). Thus, every action π by linear isometries of C(X,H) comes

3



from an action (by homeomorphisms) on the basis X together with a cocycle Ψ : X → O(H).
More precisely,

π(f)ϕ(x) := Ψ
(

f, f−1(x)
)

ϕ
(

f−1(x)
)

, (1)

where Ψ satisfies
Ψ(fg, x) = Ψ

(

f, g(x)
)

Ψ(g, x).

Now let I : Γ → Isom(C(X,H)) be an isometric action. By the Mazur-Ulam theorem [6], I is
the composition of a linear isometric action π and a cocycle ρ : Γ → C(X,H), where the cocycle
relation is

ρ(fg, x) = ρ(g, x) + π(f)
(

ρ(g)
)

.

Theorem C In the context above, assume that the action on the basis is minimal. Then the
existence of a bounded orbit for the affine isometric action π + ρ on C(X,H) implies that of a
fixed point (function).

The minimality of the action on X is necessary, as Example 2 in §2 shows. However, for
spaces of bounded measurable functions, there is not need to treat any continuity issue, and an
analogous (and much simpler !) version holds with no hypothesis on this action. For simplicity,
we restrict ourselves to countable semigroups (this allows avoiding tedious discussions concerning
the measurability of certain naturally defined maps).

Theorem D If an affine isometric action I : Γ → Isom(L∞
µ (X,H)) has a bounded orbit, then it

has a fixed point.

Having our Theorem D as a partial motivation, U. Bader, T. Gelander and N. Monod have
recently shown an analogous result for L1 spaces [2]. Their clever proof is mostly geometric,
hence completely different from ours. Quite surprisingly, it applies more generally to isometries of
preduals of von-Newmann algebras.

Despite the intrinsic interest of Theorems C and D, their possible applications in Rigidity
Theory are quite limited. Indeed, every countable group acts affinely on an L∞ space and on a
space of continuous functions without bounded orbits. For instance, one may consider the action
of Γ on ℓ∞(Γ) with regular linear part and translation part given by ρ(g)(h) := d(h, g)− d(h, id).

2 Statement of the Main Theorem and proof of Theorems

A, B and C

As we have already announced, Theorems A, B and C above are almost direct consequences of
a general principle that is captured by our Main Theorem below. Roughly, for every skew action
by isometries of a CAT(0) space over a minimal dynamics, the existence of a bounded orbit is
equivalent to the existence of a continuous invariant section. The proof of Theorem D uses a baby
form of this principle; see §4.1.

4



Consider a minimal action by continuous maps of a semigroup Γ on a compact metric space
X . Let H be either a proper CAT(0) space or a Hilbert space. We consider a skew action by
isometries of H:

f : (x, v) 7→
(

f(x), I(f, x)v
)

.

Here, for each f ∈Γ, the map I(f, ·) : X → Isom(H) is continuous and satisfies the cocycle relation

I(fg, x) = I
(

f, g(x)
)

I(g, x).

Main Theorem In the setting above, assume that for some x0 ∈ X and v0 ∈ H there is a bounded
subset B ⊂ H such that I(f, x0)v0 belongs to B for every f ∈ Γ. Then there exists a continuous
section x 7→ (x, ϕ(x)) ∈ X ×H that is invariant under the skew action of Γ, that is, that satisfies
I(f, x)ϕ(x) = ϕ(f(x)) for all f ∈ Γ and all x ∈ X.

Notice that the nonpositive curvature hypothesis is necessary, as the simple example of an
irrational rotation over the torus shows (existence of an invariant continuous section is forbidden
due to the minimality; however, all the orbits are bounded because the underlying product space
–namely, the torus– is compact).

In §4.2, we give four independent proofs of the Main Theorem in the case of proper CAT(0)
spaces. Letting H be the hyperbolic plane, this covers a case already considered in [32, Proposition
1]. (Actually, our fourth proof is strongly motivated by that of [32].)

The proof of the Main Theorem for infinite-dimensional Hilbert spaces is given in §4.3. This
proof is much more subtle than the four proofs in §4.2. The necessity of a different argument is
explained by means of a clarifying example in §4.3.1 of a cocycle whose linear part is induced by
the shift on an orthonormal basis. (These cocycles are extensively studied in Appendix B.) Let
us mention that the argument still applies (with minor modifications that we leave to the reader)
to the case where the fiber is a (separable) uniformly-convex Banach space, thus leading to an
analogous theorem in this more general situation. The eventual extension to L1 spaces seems to be
an interesting problem. Finally, we should point out that, although stated for semigroup actions,
the Main Theorem extends (with slight modifications in the proof) to pseudogroups, and would
also extend to groupoids, thus yielding potential applications for foliations.

In what follows, we assume the validity of the Main Theorem, and we proceed to give proofs
for Theorems A, B and C, together with a corollary and an example for the last of these theorems.

Proof of Theorem A. The space Pos(n) of positive-definite symmetric matrices of order n× n
is a locally-symmetric space of nonpositive curvature, hence a proper CAT(0)-space. The distance
between P ∈ Pos(n) and the identity is given by the the sum of the squares of the logarithms of
its eigenvalues. In particular, there exists C̃ > 0 such that max{‖P‖, ‖P−1‖} ≤ C implies that
the distance between P and Id ∈ Pos(n) is smaller than or equal to C̃. (See [18, Chapter XII] for
more details.)

The linear group GL(n,R) acts by isometries of Pos(n), with g sending P into g ·P := gPgT .
The condition max{‖A(f, x0)‖, ‖A(f, x0)−1‖} ≤ C implies that the orbit of the point (x0, Id) under
the associated skew action is bounded. By the Main Theorem, there exists an invariant continuous
section ϕ : X → Pos(n).
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The exponential map at the identity expId : Sym(n) → Pos(n) is a diffeomorphism between
the space of symmetric matrices of order n × n and Pos(n). Hence, there is a continuous map
v : X → Sym(n) such that for each x ∈ X,

ϕ(x) = expId (v(x)) expId (v(x))
T .

We define the continuous map B : X → GL(n,R) by letting B(x) := expId(v(x)). (Notice that B
takes values in Pos(n).) The equation of the invariance of ϕ yields

B(f(x))B(f(x))T = ϕ(f(x)) = A(f, x)·ϕ(x) = A(f, x)ϕ(x)A(f, x)T = A(f, x)B(x)B(x)TA(f, x)T ,

hence
B(f(x))−1A(f, x)B(x)

[

B(f(x))−1A(f, x)B(x)
]T

= Id.

Thus, the cocycle B(f(x))−1A(f, x)B(x) takes values in O(n,R), which closes the proof. �

Proof of Theorem B. The space Conf(n) of conformal structures on Rn identifies with the space
of positive-definite symmetric matrices of order n × n with determinant 1. This is a Riemannian
symmetric subspace of Pos(n) with nonpositive curvature, hence a proper CAT(0)-space. The lin-
ear group GL(n,R) acts by isometries on Conf(n), with g sending P into g·P := (det gTg)−1/ngPgT .
The condition KA(f, x0) ≤ C implies that the orbit of the point (x0, Id) under the associated
skew action is bounded. By the Main Theorem, there exists an invariant continuous section
ϕ : X → Conf(n). As in the proof of Theorem A, using the exponential map at the identity, we
can find a continuos map B : X → GL(n,R) such that for every x ∈ X ,

ϕ(x) = B(x)B(x)T .

Denote λ(x) = (detA(f, x)TA(f, x))−1/2n. The invariance of ϕ yields

B(f(x))B(f(x))T = ϕ(f(x)) = A(f, x) · ϕ(x) = λ(x)2A(f, x)ϕ(x)A(f, x)T

= λ(x)A(f, x)B(x)
[

λ(x)A(f, x)B(x)
]T
,

hence
λ(x)B(f(x))−1A(f, x)B(x)

[

λ(x)B(f(x))−1A(f, x)B(x)
]T

= Id.

We thus conclude that the cocycle λ(x)B(f(x))−1A(f, x)B(x) takes values in O(n,R), and therefore
B(f(x))−1A(f, x)B(x) belongs to the conformal linear group of Rn. �

Remark 1 Notice that if it is possible to solve the classical cohomological equation for λ, then this
allows conjugating A into a cocycle taking values in O(n,R).

Proof of Theorem C. Writing ρ(f, x) := ρ(f)(f−1(x)), so that the isometric action may be
written as

I(f)ϕ(x) = Ψ
(

f, f−1(x)
)

ϕ
(

f−1(x)
)

+ ρ
(

f, f−1(x)
)

,

6



we have the cocycle relations

Ψ(fg, x) = Ψ
(

f, g(x)
)

Ψ(g, x), ρ(fg, x) = ρ
(

f, g(x)
)

+Ψ
(

f, g(x)
)

ρ(g, x).

It is then easy to check that
f : (x, v) 7→ Ψ(f, x)v + ρ(f, x)

defines a skew action on X ×H by isometries on the fibers. Since I is assumed to have a bounded
orbit, all its orbits must be bounded. In particular, the orbit of the identically zero function is
bounded, that is, there exists a constant C such that ‖ρ(f, f−1(x))‖ ≤ C holds for all f ∈ Γ and
all x ∈ X . This means that the orbit of the zero vector of H under the associated skew action on
X ×H is bounded. By Theorem A, there exists a continuous function ϕ0 : X → H satisfying, for
all f ∈ Γ and all x ∈ X ,

ϕ0

(

f(x)
)

= Ψ(f, x)ϕ0(x) + ρ(f, x).

Changing x by f−1(x), this equality becomes

ϕ0(x) = Ψ
(

f, f−1(x)
)

ϕ0

(

f−1(x)
)

+ ρ(f, f−1(x)) = I(f)ϕ0(x),

thus showing that ϕ0 ∈ C(X,H) is a fixed point of I. �

The next corollary to Theorem C was kindly suggested to the second-named author by P. Py,
and should be compared with the results of Appendix A.

Corollary Consider a linear representation π on C(X,H) of the form (1). If the Γ-action on
X is minimal, then for every quasi-invariant probability measure µ on X, the natural map from
H1
(

π, C(X,H)
)

into H1
(

π,L∞
µ (X,H)

)

is injective.

Proof. Let ρ : Γ → C(X,H) be a cocycle that is cohomologically trivial in L∞
µ (X,H). Due to

Theorem C, we need to show that ρ(g) is bounded as a function in C(X,H) independently of g.
To do this, we may assume that Γ is countable. Indeed, if ρ is not bounded, then there exists a
sequence gn ∈ Γ such that ‖ρ(gn)‖C(X,H) ≥ n, for each n ∈ N. Thus, the cocycle ρ is unbounded
when restricted to the countably generated subgroup 〈g1, g2, . . .〉.

Now, since ρ is cohomologically trivial in L∞
µ (X,H), it may be written in the form

ρ
(

g, g−1(x)
)

= ρ(g)(x) = Ψ
(

g, g−1(x)
)

ϕ
(

g−1(x)
)

− ϕ(x) (2)

for a certain function ϕ ∈ L∞
µ (X,H), where the second equality above holds µ-a.e. Let X0 be the

set of points x ∈ X for which equality (2) does not hold for some g ∈ Γ. Since Γ is assumed to be
countable, X0 has zero µ-measure. Let C be the essential supremum of ‖ϕ‖. Then the µ-measure
of X∗ := {x : ‖ϕ(x)‖ > C} is zero, as well as that of X1 :=

⋃

g∈Γ g
−1(X∗). Let x0 be a point

in the full µ-measure set X \ (X0 ∪ X1). Then equality (2) holds at x0 for all g ∈ Γ. Moreover,
‖ϕ
(

g(x0)
)

‖ ≤ C also holds for all g ∈ Γ. This allows us to conclude that, for all g ∈ Γ,
∥

∥ρ
(

g, g−1(x0)
)
∥

∥ ≤ 2C. (3)

We claim that for all h ∈ Γ, we have ‖ρ(h)‖ ≤ 4C. Indeed, the cocycle identity yields

ρ
(

gh, (gh)−1(x0)
)

= Ψ
(

g, g−1(x0)
)

ρ
(

h, (gh)−1(x0)
)

+ ρ
(

g, g−1(x0)
)

.
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Thus, by (3),

∥

∥ρ
(

h, h−1g−1(x0)
)
∥

∥ ≤
∥

∥ρ
(

gh, (gh)−1(x0)
)
∥

∥+
∥

∥ρ
(

g, g−1(x0)
)
∥

∥ ≤ 4C.

Fix x ∈ X . Taking a sequence (gn) in Γ such that g−1
n (x0) → x as n→ ∞, we obtain

∥

∥ρ(h)(x)
∥

∥ =
∥

∥ρ
(

h, h−1(x)
)
∥

∥ = lim
n→∞

∥

∥ρ
(

h, h−1g−1
n (x0)

)
∥

∥ ≤ 4C,

which shows our claim and hence the Corollary. �

We close this section with an example showing that the hypothesis of minimality for the action
onX above is necessary. (A more interesting example in that the action on the basis is topologically
transitive can be derived from [15, Exercise 2.9.2].)

Example 2 Consider a parabolic element T ∈ PSL(2,R) acting on X := S1. Denoting by x0 the
unique fixed point of T , we let ψ : S1 7→ R be a function having a single discontinuity at x0, so that
T (x0) equals limx→x+

0
T (x) and is different from limx→x−

0
T (x). Then the function x 7→ ψ− ψ ◦ T

is continuous (it vanishes at x0). Therefore, we may consider the affine isometric action of Γ ∼ Z

on C(S1,R) generated by

I(T )ϕ(x) := ϕ
(

T−1(x)
)

+ ψ(x)− ψ
(

T−1(x)
)

.

Since, for every n ∈ Z,

I(T n)ϕ(x) = ϕ
(

T−n(x)
)

+ ψ(x)− ψ
(

T−n(x)
)

,

the orbit of any ϕ ∈ C(S1,R) is bounded in norm by ‖ϕ‖C(X,R) + 2‖ψ‖L∞ . We claim that,
however, there is no fixed point in C(S1,R) for this action, so that the cocycle ψ−ψ ◦ T is trivial
in H1

(

π,L∞
µ (X,H)

)

but nontrivial in H1
(

π, C(X,H)
)

. Indeed, the equality I(T−1)ϕ = ϕ yields,
for every x ∈ S1 and all n ∈ N,

ϕ− ψ = (ϕ− ψ) ◦ T = . . . = (ϕ− ψ) ◦ T n.

Since the (forward) T -orbit of any x ∈ S1 converges to x0, say by the right, this implies that the
value of ϕ−ψ is constant and equals ϕ(x0)−limx→x+

0
ψ(x). Clearly, this implies that ϕ cannot be

continuous.

3 Further applications: cohomological equations

Several problems in dynamical systems reduce to solving a linear functional (or cohomological)
equation. For example, the (linearized version of the) conjugacy problem for circle diffeomorphism
(see [10]), the study of interval exchange maps (see [20]), the existence of eigenvalues of the
Koopman operator associated with a dynamical system (see [16]), time changes for flows (see [15]),
etc. One of the most basic results about the existence of continuous solutions for these equations is
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the classical Gottschalk-Hedlund theorem that we next recall (see [9, Chapter 14] for more details).
Notice that the converse of this result is also true but much more elementary.

Theorem (Gottschalk-Hedlund) Let X be a compact metric space, T : X → X a minimal
continuous map and ρ : X → R a continuous function. If there exists a point x0 ∈ X such that

sup
n∈N

∣

∣

∣

n−1
∑

j=0

ρ
(

T j(x0)
)

∣

∣

∣
<∞, (4)

then the cohomological equation
ϕ ◦ T − ϕ = ρ (5)

has a continuous solution ϕ : X → R.

The origin of the Gottschalk-Hedlund theorem was the study of a special 2-dimensional system,
nowadays known as cylindrical cascade. Let X, T and ρ be as before. The cylindrical cascade
associated to this data is the map

F : X × R → X × R

(x, t) 7→
(

T (x), t+ ρ(x)
)

.

Gottschalk and Hedlund observed that F is topologically conjugated to the map (x, t) 7→ (T (x), t)
if and only if the cohomological equation (5) has a continuous solution.

The map F above can be though of as the skew action induced by a minimal N-action on X
and a cocycle of isometries (translations) of R. Moreover, the hypothesis (4) corresponds to that
the orbit of the point (x0, 0) under this skew action is bounded. This fits into both the framework
and the hypothesis of our Main Theorem for the case of a cocycles I into the group of isometries
of a Hilbert space H. Indeed, writing I = Ψ+ ρ, with Ψ being the linear part of I and ρ being the
translation part, the cocycle relations become

Ψ(fg, x) = Ψ
(

f, g(x)
)

Ψ(g, x), ρ(fg, x) = ρ
(

f, g(x)
)

+Ψ
(

f, g(x)
)

ρ(g, x). (6)

Whenever this is satisfied, we have an associated skew action on X ×H:

f : (x, v) 7→
(

f(x), I(f, x)v
)

.

The Main Theorem asserts that the existence of a bounded orbit for this skew action implies the
existence of a continuous invariant section ϕ. Since this means that I(f, x)ϕ(x) = ϕ(f(x)), we
have that ϕ satisfies the twisted cohomological equation

ϕ
(

f(x)
)

−Ψ(f, x)ϕ(x) = ρ(f, x). (7)

Moreover, conjugation by the homeomorphism S : (x, v) 7→
(

x, v − ϕ(x)
)

yields, for each f ∈ Γ,

SfS−1(x, v) = Sf
(

x, v + ϕ(x)
)

= S
(

f(x), I(f, x)(v + ϕ(x))
)

= S
(

f(x),Ψ(f, x)v + I(f, x)ϕ(x)
)

=
(

f(x),Ψ(f, x)v + I(f, x)ϕ(x)− ϕ(f(x))
)

=
(

f(x),Ψ(f, x)v
)

.

9



In other words, conjugation by S reduces the cocycle I to its linear part Ψ.

Example 3 If H = R and Ψ(f, x) = Id for every (f, x), then the Main Theorem is the version for
semigroups of the “equivariant Gottschalk-Hedlund lemma” of [24] (also contained in [25, Section
3.6.2]), which - as the second-named author discovered while writing this article - was originally
obtained by J. Moulin Ollagnier and D. Pinchon in [21] (compare [17]). Notice that for Γ ∼ N,
this corresponds to the classical Gottschalk-Hedlund theorem. Nevertheless, even in this particular
case, the proof we will provide for the Main Theorem differs from the classical ones in a key
geometric argument. For Γ ∼ R+, this is an equivalent form of the main result of [22].

Example 4 Again in dimension 1, let Γ ∼ N act on X by powers of a continuous, minimal map T .
Letting Ψ(n, x) := (−Id)n, the Main Theorem yields the following statement: if, for a continuous
function ρ : X → R, the values of the alternating sums

n−1
∑

k=0

(−1)kρ
(

T k(x0)
)

,

are uniformly bounded (independently of n) for some x0 ∈ X , then the cohomological equation

ϕ
(

T (x)
)

+ ϕ(x) = ρ(x)

has a continuous solution ϕ. The interest on this equation comes from the problem of extracting a
square root of the associated cylindrical cascade. More precisely, if T 1/2 is a square root of T , then
(x, v) 7→ (T 1/2(x), v + ϕ(x)) is a square root of (x, v) 7→ (T (x), v + ρ(x)) if and only of ϕ satisfies
the cohomological equation

ϕ
(

T 1/2(x)
)

+ ϕ(x) = ρ(x).

Example 5 Let H = R2 ∼ C, and consider an action of Γ ∼ N on X by powers of a continuous,
minimal map T . Assume that Ψ(n, x) = Ψ(n) does not depend on x and preserves orientation.
Then it coincides with the rotation of angle nβ, where eiβ = Ψ(1, x) for any x. Given z ∈ C, the
cocycle relation yields

I(n, x)z = Ψ(n)z + ρ(n, x) = einβz +

n−1
∑

k=0

ei(n−k−1)βρ
(

1, T k(x)
)

.

In this case, the boundedness hypothesis means that for ρ(x) := ρ(1, x) and some x0 ∈ X , the
norm of

n−1
∑

k=0

e−ikβρ
(

T k(x0)
)

(8)

is uniformly bounded (independently of n). Moreover, equation (7) becomes

ϕ
(

T (x)
)

− eiβϕ(x) = ρ(x). (9)

As a consequence of the Main Theorem, if the sums (8) are uniformly bounded, then the cohomo-
logical equation (9) has a continuous solution ϕ. (An alternative, less geometric proof of this fact
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can be derived from the results of [27].) We should point out that this equation corresponds to
the linearized version of that encoding the stability of a closed orbit under perturbation in a toy
model of a planetary system; see [28]. We refer to [8] for an accurate study of the dynamics of the
associated map (x, z) 7→ (T (x), eiβz + ρ(x)).

Example 6 Given an integer q ≥ 1, an irrational angle α, an arbitrary angle β, and a continuous
function ρ : S1 → C, we consider the skew map (θ, z) 7→ (θ+α, eiβz+ ρ(θ)) from S1×C into itself.
(This corresponds to a particular case of Example 5.) One easily checks that finding a qth root
of the form (θ, z) 7→ (θ + α/q, eiβ/qz + ϕ(θ)) for this map is equivalent to solving the cyclotonic
equation

q−1
∑

k=0

e
ikβ

q ϕ
(

θ +
(q − k − 1)α

q

)

= ρ(θ). (10)

Notice that, for β := 0 and q := 2, we retrieve an equation similar to that of Example 4.
Despite the strange form of equation (10), we claim that if α and β are independent over the

rationals, then it is equivalent to the twisted cohomological equation

ϕ(θ + α)− eiβϕ(θ) = ρ
(

θ +
α

q

)

− e
iβ

q ρ
(

θ +
α

q

)

. (11)

Indeed, if ϕ solves (10), then changing θ by θ − α/q and multiplying both sides by e
iβ

q , we
obtain

q−1
∑

k=0

e
i(k+1)β

q ϕ
(

θ +
(q − 1− (k + 1))α

q

)

= e
iβ

q ρ
(

θ − α

q

)

,

that is
q
∑

k=1

e
ikβ

q ϕ
(

θ +
(q − k − 1)α

q

)

= e
iβ

q ρ
(

θ − α

q

)

. (12)

Substracting (12) from (10) yields

ϕ
(

θ +
(q − 1)α

q

)

− e
iqβ

q ϕ
(

θ − α

q

)

= ρ(θ)− e
iβ

q ρ
(

θ − α

q

)

.

Finally, changing θ by θ + α/q yields (11).
Conversely, assume that ϕ solves (11). Then

q−1
∑

k=0

e
ikβ

q ϕ
(

θ +
(q − k − 1)α

q

)

=

q−1
∑

k=0

e
ikβ

q

[

eiβϕ
(

θ − (k + 1)α

q

)

+ ρ
(

θ − kα

q

)

− e
iβ

q ρ
(

θ − (k + 1)α

q

)

]

= ρ(θ)− eiβρ(θ − α) + eiβ
q−1
∑

k=0

e
ikβ

q ϕ
(

θ − (k + 1)α

q

)

.

Letting

ψ(θ) :=

q−1
∑

k=0

e
ikβ

q ϕ
(

θ +
(q − k − 1)α

q

)

,

11



this equality may be rewritten as

ψ(θ) = eiβψ(θ − α) + ρ(θ)− eiβρ(θ − α),

that is,
ψ(θ)− ρ(θ) = eiβ

[

ψ(θ − α)− ρ(θ − α)
]

.

The function θ 7→ ‖ψ(θ)− ρ(θ)‖ is thus invariant under the rotation of angle −α, hence constant.
If the value of this constant is nonzero, then it is well known that (modulo 1) β must be a rational
multiple of α (see, for instance, [31, Theorem 3.5]), which is contrary to our hypothesis.

4 Proof of the Main Theorem

4.1 A general strategy and proof of Theorem D

An important case covered by the Main Theorem corresponds to that where X is a single point.
In this case, our result reduces to the version for semigroups of the Bruhat-Tits lemma. To better
discuss this link, we recall the general framework (see [5, Proposition 5.10] for more details). Let H
be either a proper CAT(0) space or a (real and separable) Hilbert space. Given a bounded subset
of H, for each v ∈ H we let

rB(v) := inf
{

r > 0: B ⊂ Ball(v, r)
}

= sup
w∈B

d(v, w).

The radius of B is defined as rB := inf
{

rB(v) : v ∈ H
}

. The following facts hold:

– The infimum of rB(·) is attained. Indeed, in case of a proper CAT(0) space, this follows from
the compactness of the closed (bounded) balls. In case of a Hilbert space, this follows from the
relative compactness of bounded subsets of H when endowed with the weak topology, and the fact
that the distance function is lower-semicontinuous.

– Actually, it is attained at a unique point. Inded, this follows from the “convexity properties” of
the distance function on H, that is, the CAT(0) property.

The unique point realizing the infimum is called the geometric (or Chebyshev) center of B. This
point w := ctr(B) is thus characterized as being the unique one satisfying B ⊂ Ball(w, rB).

By construction, if I : H → H is an isometry, then rB = rI(B) and I(ctr(B)) = ctr(I(B)).
Moreover, we have the following fact (a proof is given further on).

Proposition 7 The map B 7→ ctr(B) is continuous with respect to the Hausdorff topology on
bounded subsets of H.

Let us again recall the statement of the Bruhat-Tits center lemma [7].

Lemma (Bruhat-Tits) Let Γ be a group acting by isometries of H. If the action has a bounded
orbit, then there is a point in H that is fixed by every element of Γ. As a consequence, the action
of Γ is conjugate to an action by linear isometries.
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Indeed, the center of the bounded orbit must remain fixed. If we conjugate by the translation
sending this fixed point to the origin, then the action of every element of Γ becomes an isometry
fixing the origin, that is, a linear isometry.

It is worth mentioning that Bruhat-Tits’ lemma still holds for semigroup actions, but the proof
needs an extra argument. Indeed, if B is a bounded forward-invariant set (as for example a
bounded orbit of the semigroup), it is not completely obvious that its center is invariant by every
f ∈ Γ. To see that this is the case, notice that, letting r := rB, from B ⊂ Ball(ctr(B), r) we
obtain f(B) ⊂ Ball(f(ctr(B)), r). Now, as f(B) ⊂ B, we also have f(B) ⊂ Ball(ctr(B), r). Since
r = rf(B), this necessarily implies that f(ctr(B)) = ctr(B), as desired.

The main idea. The construction above provides us with a basic strategy of proof for the Main
Theorem. Indeed, according to the hypothesis, the Γ-orbit of certain point (x0, v0) ∈ X×H remains
in a bounded subset of X ×H. By continuity, its closure M := orb(x0, v) is a compact, forward-
invariant set. Notice that since the Γ-action on X is assumed to be minimal, the projection of M
on X is the whole space. As a consequence, the Γ-orbit of any point (x, v) remains in a bounded
subset of X × H (which depends on (x, v)). Indeed, if v∗ ∈ H is such that (x, v∗) belongs to M ,
then the Γ-orbit of (x, v∗) is contained in M . Since for each v ∈ H and all f ∈ Γ,

d
(

I(f, x)v, I(f, x)v∗
)

= d(v, v∗),

this implies that the Γ-orbit of (x, v) is also bounded.
For each x ∈ X , let Mx := {v ∈ H : (x, v) ∈ M}. Notice that I(f, x)Mx = Mf(x) holds for

all f ∈ Γ and all x ∈ X . The (nonempty) set Mx is bounded, hence we may consider its center
ϕ(x) := ctr(Mx). Since the center map commutes with isometries, the curve x 7→ (x, ϕ(x)) is
invariant under the skew action. However, it is not evident at all that the thus-obtained map ϕ is
continuous (a priori, it is just measurable). Indeed, we will need to elaborate a little bit to show
that this is always the case for proper spaces. For infinite-dimensional Hilbert space fibers, this
may fail to happen, hence we will need to slightly modify our approach. The proof for this case is
strongly motivated by the main argument of Namioka-Asplund’s proof of the Ryll-Nardewski fixed
point theorem [23]. Let us point out that a slight modification allows applying this argument also
for CAT(0) proper spaces. More importantly, it easily applies to cocycles of noncontracting maps
of H, thus extending our Main Theorem to this framework.

As a first illustration of the preceding idea, we next give a

Proof of Theorem D. The proof is similar to that of Theorem C though much simpler since
we do not need to take care of continuity issues. Let ρ : Γ → L∞

µ (X,H) be the translation part
associated to the representation I, so that

I(f)ϕ(x) = Ψ
(

f, f−1(x)
)

ϕ
(

f−1(x)
)

+ ρ
(

f, f−1(x)
)

. (13)

Assume that the I-orbit orb(ϕ0) of ϕ0 is bounded so that the norm of each point therein is less
than or equal to a constant C. For each x ∈ X , we let Nx := {ϕ(x) : ϕ ∈ orb(ϕ0)}. Then for
µ-almost-every x ∈ X , this set Nx is bounded in norm by C. We may thus consider the function
ϕ : X → H defined by ϕ(x) := ctr(Nx). One can check that this is a measurable function. (This is
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an easy exercise if H has finite dimension, but a little bit harder in the infinite-dimensional case.)
Moreover, it clearly belongs to L∞

µ (X,H). We claim that ϕ is a fixed point of the isometric action.
Indeed, due to (13), for µ-almost-every x ∈ X and every g ∈ Γ, we have

Ng−1(x) =
{

ϕ(g−1(x)) : ϕ ∈ orb(ϕ0)
}

=
{

Ψ
(

g, g−1(x)
)−1[

I(g)ϕ(x)− ρ
(

g, g−1(x)
)]

: ϕ ∈ orb(ϕ0)
}

= Ψ
(

g, g−1(x)
)−1{

I(g)ϕ(x) : ϕ ∈ orb(ϕ0)
}

−Ψ
(

g, g−1(x)
)−1

ρ
(

g, g−1(x)
)

= Ψ
(

g, g−1(x)
)−1

(Nx)−Ψ
(

g, g−1(x)
)−1

ρ
(

g, g−1(x)
)

,

hence
Ψ
(

g, g−1(x)
)

(Ng−1(x)) + ρ
(

g, g−1(x)
)

= Nx.

Taking the center at both sides we obtain, for µ-almost-every x ∈ X ,

Ψ
(

g, g−1(x)
)

ϕ
(

g−1(x)
)

+ ρ
(

g, g−1(x)
)

= ϕ(x),

which is equivalent to I(g)ϕ = ϕ. �

4.2 The finite-dimensional case

4.2.1 First proof

In the context of the Main Theorem, assume that H is a proper CAT(0) space. Let M be any
nonempty, compact invariant set for the skew action on X ×H.

Lemma 8 Given x ∈ X, let (fk) be a sequence of elements in Γ such that fk(x) → x. Then
I(fk, x)(Mx) converges (in the Hausdorff topology) to Mx.

Proof. If not, then one of the following two possibilities should arise.

1.- There is a sequence of points vk ∈ I(fk, x)(Mx) converging to a certain v∗ /∈Mx.

This case is impossible. Otherwise, the sequence of points (fk(x), vk) ∈ M would converge to
the point (x, v∗) /∈M , thus contradicting the fact that M is closed.

2.- There is a point v∗ ∈ Mx having a neighborhood V ⊂ Rℓ such that, for large-enough k, no
point w ∈ I(fk, x)(Mx) belongs to V .

This case is impossible as well, but the argument is more subtle. First, notice that since
I(fk, x)(Mx) is uniformly bounded on k, the isometries I(fk, x) remain inside a compact subset
of Isom(H). Passing to a subsequence if necessary, we may assume that they converge to some
I ∈ Isom(H). By our assumption, the vector v∗ belongs to Mx \ I(Mx). Moreover, we must have
I(Mx) ⊂Mx, because M is invariant and closed. Therefore, I(Mx) ( Mx. Since Mx is closed, this
is impossible, because of the following

Independent Claim. If C is a (nonempty) compact subset of H and J is an isometry such that
J(C) ⊂ C, then J(C) = C.

14



To show this, first notice that Jn(C) ⊂ C for all n ∈ N, which forces the subgroup G = 〈J〉
of Isom(H) to be compact. We claim that Id is an accumulation point of G. Indeed, if J0 is any
accumulation point of G, then for every ε > 0, there exists n1 < n2 such that dist(Jn1, J0) < ε/2
and dist(Jn2 , J0) < ε/2, where dist is a bi-invariant metric on G. This yields dist(Jn1−n2 , Id) < ε.
Since this holds for every ε > 0, there exists an increasing sequence of integers mk such that Jmk

converges to the identity, as asserted.
Assume now that some vector v belongs to C \ J(C). Since J(C) is closed, there exists a

neighborhood V of v such that J(C) ∩ V = ∅. Then we have Jm(C) ∩ V = ∅ for all m > 0.
However, since Jmk → Id, the sets Jmk(C) converge to C in the Hausdorff topology, and therefore
Jmk(C) ∩ V 6= ∅ for large-enough k. This contradiction concludes the proof. �

Now fix x0 ∈ X , and let v0 := ctr(Mx0).

Lemma 9 If (fk) is a sequence of group elements such that fk(x0) → x0, then I(fk, x0)v0 → v0.

Proof. Since I(fk, x0)(Mx0) converges to Mx0 , by Proposition 7, we have that ctr(I(fk, x0)(Mx0))
converges to ctr(Mx0). Since the map ctr commutes with isometries,

I(fk, x0)v0 = I(fk, x0)
(

ctr(Mx0)
)

−→ ctr(Mx0) = v0,

thus showing the lemma. �

Denote the closure of the orbit of (x0, v0) by M̂ . This is a compact invariant set. Moreover, by
Lemma 9, the fiber M̂x0 is reduced to v0.

Lemma 10 For each x ∈ X, the set M̂x is reduced to a single point.

Proof. Assume for a contradiction that M̂x contains at least two points, say v 6= v∗. Since
the Γ-action on X is minimal, there exists a sequence (fk) in Γ such that fk(x) → x0. The
points (fk(x), I(fk, x)v) and (fk(x), I(fk, x)v

∗) belong to M̂ for each k. Passing to a subsequence
if necessary, we may assume that they converge to (x0, w) and (x0, w

∗), respectively. Notice that
because M̂ is invariant and closed, these two limit points are contained in M̂ , hence both w and
w∗ are in M̂x0 . Now for all k, we have

d
(

I(fk, x)v, I(fk, x)v
∗
)

= d(v, v∗).

Therefore, d(w,w∗) = d(v, v∗) > 0. However, this contradicts the fact that M̂x0 = {v0}. �

End of the proof. By Lemma 10, the set M̂ is the graph of a well-defined function ϕ : X →
H. Since M̂ is compact, this function is continuous. Finally, because M̂ is invariant, the curve
x → (x, ϕ(x)) satisfies all the desired properties. This concludes the proof of the Main Theorem
provided we give a

Proof of Proposition 7. Given ε > 0, let Bε be a set within Hausdorff distance distH(B,Bε) ≤
ε from B. From the inclusions B ⊂ Ball(ctr(B), rB) and Bε ⊂ Ball(B, ε), we obtain Bε ⊂
Ball(ctr(B), rB + ε). Similarly, we have B ⊂ Ball(ctr(Bε), rBε

+ ε). As a consequence,
∣

∣rB − rBε

∣

∣ ≤ ε. (14)
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Let mε be the midpoint between ctr(B) and ctr(Bε). For each w ∈ Bε, the median ineequality
(i.e. the CAT(0) property) yields

d(mε, w)
2 =

d(ctr(Bε), w)
2

2
+
d(ctr(B), w)2

2
− d(ctr(Bε), ctr(B))2

4
.

Taking the supremum over all w ∈ Bε and using (14), we obtain

r2Bε
= sup

w∈Bε

d
(

mε, w
)2

≤ r2Bε

2
+

supw∈Bε
d(ctr(B), w)2

2
− d(ctr(Bε), ctr(B))2

4

≤ r2Bε

2
+

1

2

[

sup
w∈B

d(ctr(B), w) + distH(B,Bε)

]2

− d(ctr(Bε), ctr(B))2

4

≤ r2Bε

2
+

1

2

[

rB + ε
]2 − d(ctr(Bε), ctr(B))2

4
,

hence

d
(

ctr(Bε), ctr(B)
)2 ≤ 4

(

[

rB + ε
]2

2
− r2Bε

2

)

≤ 2
(

[rB + ε]2 − [rB − ε]2
)

= 8εrB.

Since the right-side expression converges to zero together with ε, this concludes the proof. �

4.2.2 Second proof

We next provide an even more geometric argument of proof. Consider a compact, invariant set
M for the skew action of Γ. Fix x0 ∈ X , and denote v0 := ctr(Mx0). Denote also the closure of
the orbit of (x0, v0) by M̂ . The main step in the first proof was to show that M̂x0 is reduced to
{v0}. (Starting from this, Lemma 10 shows that M̂x is reduced to a single point for each x ∈ X ,
which allows to conclude in the same way as before.)

Assume for a contradiction that M̂x0 contains a point v
′
0 distinct from v0, and let r0 := rMx0

and
ε0 := d(v′0, v0) > 0. There must be a sequence (fk) in Γ such that (fk(x0), I(fk, x0)v0) converges
to (x0, v

′
0). Since Mfk(x0) ⊂ Ball(I(fk, x0)v0, r0), given ε > 0, we must have, for large-enough k,

Mfk(x0) ⊂ Ball
(

v′0, r0 + ε
)

. (15)

We now claim that for large-enough k, we also have

Mfk(x0) ⊂ Ball(v0, r0 + ε). (16)

Indeed, if not, then there would be a sequence (vn) such that vkn belongs toMfkn (x0)\Ball(v0, r0+ε)
for an increasing sequence of integers (kn). Passing to a subsequence if necessary, this would yield
a limit point v∗ ∈Mx0 \ Ball(v0, r0 + ε), which is absurd.

Now, (15) and (16) yield (for a large-enough k depending on ε > 0)

Mfk(x0) ⊂ Ball(v′0, r0 + ε)
⋂

Ball(v0, r0 + ε).
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The contradiction we seek comes from the fact that right-side set has radius at most r0−ε provided
that ε is less than or equal to ε20/16r0. Indeed, letting v be the midpoint between v0 and v′0, the
median inequality yields, for each w ∈ Ball(v′0, r0 + ε)

⋂

Ball(v0, r0 + ε),

d(w, v)2 +
d(v0, v

′
0)

2

4
≤ d(w, v0)

2

2
+
d(w, v′0)

2

2
.

Thus,

d(w, v)2 ≤ (r0 + ε)2

2
+

(r0 + ε)2

2
− ε20

4
≤ (r0 − ε)2.

Therefore, the set Ball(v′0, r0 + ε)
⋂

Ball(v0, r0 + ε) is contained in Ball(v, r0 − ε), which shows
that its radius is at most r0 − ε.

4.2.3 Third proof

This proof is restricted to the case of cocycles of isometries of Rℓ, but very likely it extends to
general proper CAT(0) spaces. Its interest relies in that it relates previous discussion to a classical
notion.

The recurrence semigroup. Let us consider a general skew action of a semigroup Γ on X ×Rℓ,
namely f : (x, v) → (f(x), I(f, x)v), so that the Γ-action on X is minimal and each I(f, x) is
an isometry of Rℓ. Given x ∈ X , we denote by Rx the set of isometries I of Rℓ such that
I = limk I(fk, x) for a sequence of elements fk ∈ Γ satisfying fk(x) → x. We begin with the
following

Lemma 11 Assume that there is a compact subset K of Isom(Rℓ) such that I(f, x) lies in K for
every f ∈Γ and all x∈X. (This is equivalent to that the set I(f, x)v is bounded for each v ∈ Rℓ.)
Then for every x ∈ X, the set Rx is a semigroup.

Proof. Let d be the metric on X , and let dist be the left-invariant distance on the group of
isometries of Rℓ induced by dist(Ψ + ρ, Id) = ‖Ψ− Id‖+ ‖ρ‖. One readily checks that there is a
constant C = CK such that dist is perturbed under right-translation by a factor at most C, that
is, dist(I1I, I2I) ≤ Cdist(I1, I2) for all I ∈ K and all I1, I2 in Isom(Rℓ).

Given I1, I2 in Rx, we need to show that I1I2 also belongs to Rx. For i ∈ {1, 2}, choose a
sequence (fi,k)k such that fi,k(x) → x and I(fi,k, x) → Ii. Given ε > 0, there is an integer k1 ∈ N

such that, for all k ≥ k1,

d
(

f1,k(x), x
)

≤ ε and dist
(

I(f1,k, x), I1
)

≤ ε.

By continuity, there exists δ∈]0, ε[ such that if d(x, y) ≤ δ, then

d
(

f1,k1(x), f1,k1(y)
)

≤ ε and dist
(

I(f1,k1 , x), I(f1,k1, y)
)

≤ ε.

Fix k2 ∈ N large-enough that

d
(

f2,k2(x), x
)

≤ δ and dist
(

I(f2,k2, x), I2
)

≤ ε.
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We have
d
(

f1,k1f2,k2(x), x
)

≤ d
(

f1,k1(f2,k2(x)), f1,k1(x)
)

+ d
(

f1,k1(x), x
)

≤ 2ε.

Moreover, using the almost invariance of dist, from dist(I(f1,k1, x), I(f1,k1, f2,k2(x))) ≤ ε, we
get

dist
(

I(f1,k1 , x)I(f2,k2 , x), I(f1,k1f2,k2 , x)
)

= dist
(

I(f1,k1 , x)I(f2,k2 , x), I(f1,k1 , f2,k2(x))I(f2,k2 , x)
)

≤ Cε.

Therefore,

dist
(

I1I2, I(f1,k1f2,k2 , x)
)

≤ dist
(

I1I2, I(f1,k1 , x)I(f2,k2 , x)
)

+ dist
(

I(f1,k1 , x)I(f2,k2 , x), I(f1,k1f2,k2 , x)
)

≤ dist
(

I1I2, I(f1,k1 , x)I2
)

+ dist
(

I(f1,k1 , x)I2, I(f1,k1 , x)I(f2,k2 , x)
)

+ Cε

= Cdist
(

I1, I(f1,k1 , x)
)

+ dist
(

I2, I(f2,k2 , x)
)

+ Cε

≤ (2 + C)ε.

Summarizing, for each ε > 0, we have found an element f ∈ Γ, namely, f := f1,k1f2,k2 , such that

d
(

f(x), x
)

≤ 2ε and dist
(

I1I2, I(f, x)
)

≤ (2 + C)ε.

By definition, this shows that I1I2 belongs to Rx. �

We will call Rx the recurrence semigroup of x. (A closely related notion was developed in
[1].) We must emphasize that, in general, Rx is not a group, even if Γ has a group structure.
Nevertheless, if Γ is a group and its action on the basis X is equicontinuous, then Rx is a group.
Indeed, given I ∈ Rx, choose a sequence (fk) in Γ so that fk(x) → x and I(fk, x) → I. By
equicontinuity, we also have f−1

k (x) → x, and passing to a subsequence if necessary, we may assume
that I(f−1

k , x) converges to an isometry I ′. Now, the proof of Lemma 11 yields that I(f−1
n fm) → I ′I

as n,m go to infinity. Letting n = m go to infinity, this obviously implies Id = I ′I, that is, I ′ ∈ Rx

is the inverse of I.

Lemma 12 If M is the closure of the orbit of a point (x, v) ∈ X×Rℓ under the skew action, then
the set Mx := {w ∈ Rℓ : (x, w) ∈M} coincides with {Iv : I ∈ Rx}.

Proof. Each point in M is of the form limk(fk(x), I(fk, x)v) for a sequence of elements fk ∈ Γ.
Thus, each point of w ∈Mx has the form limk I(fk, x)v for a sequence (fk) in Γ such that fk(x) → x.
The lemma follows from the fact that the set of isometries sending a prescribed vector v ∈ Rℓ into
some fixed bounded neighborhood of another prescribed vector w ∈ Rℓ is compact. �

Assume now that the orbit of some point (x, v) ∈ X ×Rℓ is bounded, and let M be its closure.
Fix a point x0 ∈ X , and let v0 := ctr(Mx0). Finally, let M̂ be the closure of the orbit of the point
(x0, v0).

Lemma 13 The set M̂x0 :={w ∈ Rℓ : (x0, w) ∈ M̂} reduces to {v0}.
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Proof. By Lemma 12, the point v0 may be written as ctr({Iv : I ∈ Rx0}). By the semigroup
version of the Bruhat-Tits center lemma, this point is fixed by every element of Rx0. In other
words, the set {Iv0 : I ∈ Rx0} reduces to {v0}. Finally, by Lemma 12 again, this set coincides with
M̂x0 . �

The rest of the third proof works as the final part of the first one. Indeed, as in Lemma 10, one
may show that for each x ∈ X , the set M̂x is reduced to a single point. Hence, the set M̂ is the
graph of a well-defined function ϕ : X → Rℓ, and the curve x 7→ (x, ϕ(x)) satisfies all the desired
properties.

4.2.4 Fourth proof

Assume once again that there is a nonempty, compact, forward-invariant set M for the skew
action of Γ.

Lemma 14 The function D : X → [0,∞[ that makes correspond, to each x ∈ X, the diameter of
the set Mx := {w ∈ H : (x, w) ∈M}, is constant.

Proof. The function D is invariant under the Γ-action on X . Since this action is assumed to be
minimal, in order to prove that D is constant, it suffices to show that it is upper-semicontinuous.
To do this, let (xn) be an arbitrary sequence of points converging to a certain x ∈ X . Let (xnk

) be
a subsequence such that limkD(xnk

) = lim supnD(xn) =: ∆. For each k, let (vk, wk) be a pair of
points of Mxnk

at distance D(xnk
). Passing to a subsequence if necessary, we may suppose that vk

(resp. wk) converges to a certain v ∈ Mx (resp. w ∈ Mx). Clearly, d(v, w) ≥ limk d(vk, wk) = ∆.
In particular, the diameter of Mx is greater than or equal to ∆. This shows the lemma. �

We will denote by D(M) the common value of the diameter of the fibers Mx. Notice that, de-
noting by cv(M) the convex closure ofM along the fibers, we have D

(

cv(M)
)

= D(M). Moreover,
straightforward arguments show that cv(M) is also compact and invariant.

Now consider the set

M∗ :=
{

(x, v) : there exist v1, v2 at distance D in Mx such that v is the midpoint of the segment v1v2
}

.

Notice that M∗ = cv(M)∗ and cv(M∗) is contained in cv(M). Moreover, M∗ is invariant under
the skew action. Furthermore, easy compactness-type arguments show that M∗ is closed (hence
compact) and nonempty. (A priori, the fibers of M∗ do not vary continuously.) Finally, the
preceding lemma applied to M∗ shows that all its fibers have the same diameter.

The next lemma is a direct consequence of [7, Lemma 3.2.3], and we reproduce the proof just
for the reader’s convenience.

Lemma 15 One has the inequality D(M∗) ≤ D(M)/
√
2. Moreover, this estimate is sharp.

Proof. Fix x ∈ X and let v, w be points in M∗
x . By definition, there exist two pairs of points

(v1, v2) and (w1, w2) at distance D(M) in Mx such that v (resp. w) is the midpoint of v1v2 (resp.
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w1w2). The median inequality applied to the triangle ∆(v1, w1, w2) yields

d(v1, w)
2 +

D(M)2

4
≤ d(v1, w1)

2

2
+
d(v1, w2)

2

2
≤ D(M)2

2
+
D(M)2

2
= D(M)2,

hence, d(v1, w)
2 ≤ 3D(M)2/4. Similarly, d(v2, w)

2 ≤ 3D(M)2/4. Using this, the median
inequality for ∆(v1, v2, w) yields

d(v, w)2 +
D(M)2

4
≤ d(v1, w)

2

2
+
d(v2, w)

2

2
≤ 3D(M)2

4
.

This easily leads to the estimate of the lemma. To see that this estimate is sharp, it suffices to
consider the case where each Mx consists of four points that are the vertices of a tetrahedron. (In
dimension 2, the constant

√
2 can be replaced by 2.) �

End of the proof. Let us define the sequence of nonempty, compact, invariant sets Mn by
M1 := cv(M) and Mn := cv(M∗

n−1) for each n ≥ 2. Since Mn ⊂Mn−1 holds for each n > 1, the set

M̂ :=
⋂

n≥1Mn is also nonempty and compact, as well as invariant. Moreover, Lemma 15 implies

that D(M̂) = 0. In other words, each fiber M̂x consists of a single point ϕ(x), and the thus-defined
function ϕ satisfies all the desired properties. (Its continuity follows from the fact that its graph
is compact.)

Remark 16 It is very instructive to compare the technique of the preceding proof with the
three previous ones. Given a bounded subset B ⊂ H, we let B1 := B, and having defined
B2, . . . , Bn−1, we let Bn be the set of midpoints of segments between points of Bn−1 situated at
distance diam(Bn−1). Finally, we call the point ctr∗(B) :=

⋂

n≥1Bn the Bruhat-Tits center of B.
In general, ctr∗(B) does not coincide with ctr(B). For example, if B consists of three points

that are the vertices of a triangle ∆ all of whose angles are ≤ π, then ctr(B) coincides with the
circumcenter of ∆. However, if the sides of ∆ have different length, then ctr∗(B) is nothing but
the midpoint of the largest side.

4.3 The case of infinite-dimensional Hilbert space fibers

4.3.1 The lack of continuity of invariant sections given by centers along the fibers

For fibers that are infinite dimensional Hilbert spaces, none of the strategies of proof proposed
so far works. Indeed, there is a serious technical problem in defining the recurrence semigroup
(the group of linear isometries is not compact when endowed with the norm-topology). Moreover,
the continuity in the Hausdorff topology for the weak topology does not guarantee the continuity
of the center. Finally, the diameter of the fibers of an skew-invariant, weakly-compact set is not
necessarily constant.

In a more concrete way, the example below showing that the center along the fibers of a
weakly-compact invariant set may fail to be continuous illustrates all these technical problems.
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Example 17 Let us consider the Hilbert space H ∼ ℓ2(Z), and let Γ ∼ Z be acting on X by
powers of a minimal homeomorphism T . Let us consider the skew action with linear part induced
by Ψ(1, x)vn = vn+1 for every x, where {vn} is an orthonormal basis ofH, and with translation part
ρ : X → H vanishing everywhere. Fix x0 ∈ X , and consider the two-points set {(x0, 0), (x0, v0)}.
The closure (for the weak topology) of its orbit under the skew action is a set M whose fiber over
x ∈ X coincides with {0} if x is not in the orbit of x0, and with {0, vn} if x = T n(x0). In the first
case, we have ctr(Mx) = {0}, while for x = T n(x0) we have ctr(Mx) = {vn/2}. It is then easy
to see that the function ϕ : x 7→ ctr(Mx) is not weakly continuous (namely, it is discontinuous at
every point).

4.3.2 Existence of weakly-continuous invariant sections

In this section, we deal with a skew action by isometries of a semigroup Γ so that the fibers are a
Hilbert space H and the dynamics on the basis is minimal. We assume that, for all f ∈ Γ, the map
I(f, ·) : X → Isom(H) is continuous for the strong topology. Writing I(f, ·) = Ψ(f, ·) + ρ(f, ·),
this means that Ψ(f, ·) : X → U(H) is norm-continuous and ρ(f, ·) : X → H is continuous for the
strong topology on H. We endow X × H with the product topology, where the topology on the
factor H is the weak one.

Suppose that there exists a bounded orbit for the skew action, and let us consider its convex
closure M . By this we mean the smallest compact set that contains the given set and is convex
along the fibers, in the sense that if (x, v), (x, w) belong to M then (x, λv + (1− λ)w) ∈M for all
0 ≤ λ ≤ 1. The family F of nonempty, compact, invariant sets that are convex along the fibers
is ordered by inclusion. A straightforward application of Zorn’s lemma shows that it contains a
minimal element. The crucial step is the next

Lemma 18 For each minimal elementM of the family F , the fiberMx above x consists of a single
vector, for each x ∈ X.

This lemma yields a weakly-continuous invariant section for the skew action. Indeed, the setM
will be the graph of a function ϕ : X → H which is weakly continuous, since its graph is compact.
Moreover, since the set M is invariant, ϕ is an invariant function.

Proof of Lemma 18. Assume that for some x0 ∈ M the fiber Mx0 contains two vectors v1, v2
at a distance ‖v1 − v2‖ =: ε > 0. Let r(M) > 0 be the infimum of the radius r such that, for all
x ∈ X , the fiber Mx is contained in Ball(0, r). Given κ < 1, there must exist (y, w) ∈M such that
‖w‖ ≥ κr(M). Fix such a w ∈ My and κ < 1 such that

κ > 4

√

1− ε2

4r(M)2
.

For each λ < 1, let Pλ be the affine hyperplan λw+ 〈w〉⊥. This hyperplane divides the whole fiber
H above y into two closed hemispheres P+

λ , P
−
λ , where w belongs to the interior of P+

λ .
Let u be the midpoint between v1 and v2. By convexity, the point (x0, u) := (x, (v1 + v2)/2)

must belong to M . We claim that the closure of its orbit must intersect the hemisphere {y}×P+
λ .

21



Otherwise, the convex closure of its orbit would be a nonempty, compact, invariant set that is
convex along the fibers and it is strictly contained inM (it does not contain (y, w)). However, this
contradicts the fact that M is a minimal element of F .

We thus conclude that for each λ∗ < λ there exists f ∈ Γ such that I(f, x0)u ∈ P+
λ∗

. Fixing
such a λ∗ so that

λ∗ >
4

√

1− ε2

4r(M)2
,

we claim that
either I(f, x)v1 or I(f, x)v2 lies outside Ball

(

0, r(M)
)

. (17)

Before proving this claim, notice that it contradicts the definition of r(M), thus concluding the
proof.

The proof of (17) relies on the uniform convexity of H. In a quantitative manner, since I(f, x)u
lies in P+

λ∗

, its norm is at least κλ∗r(M). By the median equality

∥

∥I(f, x)v1 − I(f, x)v2
∥

∥

2

4
=

∥

∥I(f, x)v1
∥

∥

2

2
+

∥

∥I(f, x)v2
∥

∥

2

2
−
∥

∥I(f, x)u
∥

∥

2
,

this yields

ε2

4
≤
∥

∥I(f, x)v1
∥

∥

2

2
+

∥

∥I(f, x)v2
∥

∥

2

2
− κ2λ2∗r(M)2.

Assuming that both I(f, x)v1 and I(f, x)v2 are in Ball(0, r(M)), this implies that

ε2

4
≤ r(M)2 − κ2λ2∗r(M)2 = r(M)2

(

1− κ2λ2∗
)

,

which contradicts our choice of the constants κ, λ∗. �

4.3.3 Strong continuity of weakly-continuous invariant sections

In order to complete the proof of the Main Theorem in the infinite-dimensional case, we need
to show that in the context of §4.3.2, the following hods:

Proposition 19 Every weakly-continuous solution of the cohomological equation (7) is strongly
continuous. Equivalently, all weakly-continuous, skew-invariant sections are strongly continuous.

To show this proposition, we begin by giving a geometrical criterion for strong continuity. To
do this, given a function ϕ : X → H, we define its oscillation at a point x as

osc(ϕ)(x) := lim sup
{y,z}→{x}

∥

∥ϕ(y)− ϕ(z)
∥

∥.

Our first lemma should be clear from the definition.

Lemma 20 The map ϕ is strongly continuous at a point x ∈ X if and only if osc(ϕ)(x) = 0.
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Our second lemma involves the underlying dynamics of our setting.

Lemma 21 If the curve x 7→ (x, ϕ(x)) is skew invariant, then the function x 7→ osc(ϕ)(x) is
invariant under the action of Γ on X.

Proof. Let f ∈ Γ and x ∈ X be given. It is enough to show that, given sequences (yn), (zn)
converging to x so that ‖ϕ(yn)− ϕ(zn)‖ converges to some value ε, then there exist (ȳn) and (z̄n)
converging to f(x) so that ‖ϕ(ȳn) − ϕ(z̄n)‖ also converges to ε. We will show that this holds for
ȳn := f(yn) and z̄n := f(zn). Indeed, the value of

∥

∥ϕ
(

f(yn)
)

− ϕ
(

f(zn)
)
∥

∥

may be written as
∥

∥I(f, yn)ϕ(yn)− I(f, zn)ϕ(zn)
∥

∥,

and differs from
∥

∥I(f, x)ϕ(yn)− I(f, x)ϕ(zn)
∥

∥ = ‖yn − zn‖
by no more than

∥

∥I(f, yn)ϕ(yn)− I(f, x)ϕ(yn)
∥

∥+
∥

∥I(f, zn)ϕ(zn)− I(f, x)ϕ(zn)
∥

∥,

which equals

∥

∥

(

Ψ(f, yn)−Ψ(f, x)
)

ϕ(yn) + ρ(yn)− ρ(x)
∥

∥+
∥

∥

(

Ψ(f, zn)−Ψ(f, x)
)

ϕ(zn) + ρ(zn)− ρ(x)
∥

∥.

Since ϕ is weakly continuous, it must be bounded, say by a constant C > 0. This implies that the
last expression above is bounded from above by

C
(

‖Ψ(f, yn)−Ψ(f, x)‖ + ‖Ψ(f, zn)−Ψ(f, x)‖
)

+ ‖ρ(yn)− ρ(x)‖ + ‖ρ(zn)− ρ(x)‖.

By the norm-continuity of Ψ(f, ·) and the strong continuity of ρ(f, ·), this last expression converges
to zero. This concludes the proof. �

The next lemma shows that the function x 7→ osc(ϕ)(x) is lower-semicontinuous.

Lemma 22 For each ε > 0, the set {x : osc(ϕ)(x) < ε} is open in X.

Proof. Given x0 in this set, let ε0 := osc(ϕ)(x0) < ε. Then there exists δ > 0 such that, for
all y, z at distance < δ from x0, we have ‖ϕ(y) − ϕ(z)‖ ≤ 1

2
(ε + ε0). This clearly implies that,

for all x ∈ X such that dist(x, x0) < δ, we have osc(ϕ)(x) ≤ 1
2
(ε + ε0) < ε. In other words, the

δ-neighborhood of x0 is contained in {x : osc(ϕ)(x) < ε}, thus showing the lemma. �

We are now ready to prove Proposition 19. Indeed, since the Γ-action on X is assumed to be
minimal, Lemmata 21 and 22 imply that each set {x : osc(ϕ)(x) < ε} is either empty or coincides
with the whole space X . If we are able to detect a point where ϕ is strongly continuous, then by
Lemma 20 we will have a point in each of these sets. Hence, each of these sets will coincide with
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X , so that the oscillation of ϕ at every point will be zero. By Lemma 20 again, this will imply
that ϕ is strongly continuous.

Thus, to conclude the proof, we need to ensure the existence of a point of strong continuity for
ϕ. This follows from the following well-known

Lemma 23 Every weakly-continuous function ϕ : X → H is strongly continuous on a Gδ-set.

Proof. Let H1 ⊂ H2 ⊂ . . . be a sequence of finite-dimensional subspaces such that H∗ :=
⋃

n Hn

is dense in H. Since ϕ is weakly continuous, each of the functions x 7→ ‖ϕ(x)‖Hn
is continuous.

By a classical theorem of R. Baire [4] (see also [26]), the pointwise limit of these functions is
continuous on a Gδ-set Xϕ. But this pointwise limit is nothing but the function x 7→ ‖ϕ(x)‖.
Recalling now that, in any Hilbert space, weak convergence plus convergence of the norm imply
strong convergence, this yields the strong continuity of ϕ on Xϕ. �

A Appendix. Measurable versus continuous solutions

We next give a rigidity result for measurable solutions of the cohomological equation (7) that
corresponds to a dynamical version/extension of the Corollary to Theorem C. Given a probability
measure µ on X that is quasi-invariant under the Γ-action, we will say that the linear part of a
skew action on X × H is weakly ergodic if the only measurable functions φ : X → H such that
Ψ(f, x)φ(x) = φ(f(x)) for all f ∈ Γ and µ-a.e. x ∈ X are the constant ones.

Example 24 If Ψ(f, x) = Id for all (f, x), then the linear part is weakly ergodic if and only if the
Γ-action on X is ergodic w.r.t. µ.

Example 25 In Example 5, assume that T is the rotation of angle α /∈ Q on the circle (endowed
with the Lebesgue measure). If φ : S1 → C satisfies φ(θ + α) = eiβφ(θ) for a.e. θ ∈ S1, then φ
must be constant unless α and β are rationnaly dependent. (See the final argument in Example
6.) We thus conclude that the linear part of the skew action is weakly ergodic provided α and β
are independent over the rationals.

Example 26 As in Example 17, assume that Γ ∼ Z acts by powers of a minimal homeomorphism
T and that the linear part of its skew action on an infinite-dimensional Hilbert space H is generated
by Ψ(1, x)(vn) = Ψ(vn) = vn+1, where {vn} is an orthonormal basis of H and x ∈ X is arbitrary.
We claim that the weak ergodicity holds for any T -invariant probability measure µ. Indeed, let
φ(x) =

∑

n∈Z φn(x)vn be a measurable function from X to H such that Ψ(φ(x)) = φ(T (x)), for all
x ∈ X . Then we have φn+1(T (x)) = φn(x), for all x ∈ X . If φ is not µ-a.e. equal to zero, then for
some j ∈ Z and δ > 0 we have µ(Cj,δ) > 0, where Cj,δ := {x ∈ X : |φj(x)| ≥ δ}. By Poincaré’s
recurrence theorem, for µ-a.e. point x ∈ Cj,δ there exists an increasing infinite sequence (ni) such
that T−ni(x) ∈ Cj,δ, hence |φj+ni

(x)| = |φj(T
−ni(x))| ≥ δ. However, this is impossible, as φ(x)

belongs to H for µ-a.e. x ∈ X .

24



Example 27 Let Γ be a countable group provided with a spread-out, non-degenerate probabil-
ity distribution p, and let X := P (Γ, p) be the associate Poisson boundary endowed with the
corresponding stationary measure µ. As a direct consequence of Kaimanovich’s double ergodicity
theorem [12], the linear part of every skew action by isometries of a Hilbert space above the natural
action of Γ on X is weakly ergodic (we assume that X is metrizable and compact to fit in our
general framework).

Lemma 28 Given a skew action on X ×H whose linear part is weakly ergodic w.r.t. µ, for any
two skew-invariant measurable sections x 7→ (x, ϕ(x)) and x 7→ (x, ϕ(x)), the difference ϕ−ϕ is a
µ-a.e. constant vector. If, moreover, there is no common nonzero eigenvector for all the Ψ(f, x),
then there is at most one skew-invariant measurable solution of (7).

Proof. For all f ∈ Γ, one has µ-a.e.

ϕ
(

f(x)
)

−Ψ(f, x)ϕ(x) = ρ(x) = ϕ
(

f(x)
)

−Ψ(f, x)ϕ(x),

hence,

ϕ
(

f(x)
)

− ϕ
(

f(x)
)

=
[

Ψ(f, x)ϕ(x) + ρ(x)
]

−
[

Ψ(f, x)ϕ(x) + ρ(x)
]

= Ψ(f, x)
(

ϕ(x)− ϕ(x)
)

.

Since the linear part of the skew action is assumed to be weakly ergodic, this implies that ϕ− ϕ
is constant. In particular, ϕ− ϕ is a common eigenvector of all the Ψ(f, x). �

Proposition 29 Given a skew action on X × H, assume that the cohomological equation (7)
admits a solution ϕ ∈ L∞

µ (X,H), where µ is such that the linear part is weakly ergodic. If the
underlying semigroup Γ admits a topology with a countable, dense subset such that the skew action
is continuous, then ϕ is continuous.

Proof. For each f lying in a countable, dense subset Γ0 of Γ, let Yf :=
{

x ∈ X : I(f, x)ϕ(x) 6=
ϕ
(

f(x)
)}

. Then Yf has null µ-measure, as well as Y :=
⋃

f∈Γ0
Yf . Let C be the essential supremum

of the function x 7→ ‖ϕ(x)‖, and let Z0 be the preimage of ]C,∞[ under this function. Then Z0

has null µ-measure, as well as Z :=
⋃

f∈Γ0
f−1(Z0). Now, for each x0 in the µ-full measure set

X \ (Y ∪ Z) and all f ∈ Γ0, we have

I(f, x0)ϕ(x0) = ϕ
(

f(x0)
)

and
∥

∥ϕ
(

f(x0)
)
∥

∥ ≤ C.

Since Γ0 is dense in Γ, this actually holds for all f ∈ Γ, by continuity. In other words, the Γ-orbit
of the point (x0, v0) := (x0, ϕ(x0)) remains in a bounded subset of H. The proposition then follows
from the Main Theorem combined with Lemma 28. �
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B Appendix. Cocycles over a shift

Given a minimal homeomorphism T : X → X , we consider the cocycle of isometries of a
Hilbert space H induced by I(1, x)v = Ψ(x)v + ρ(x), where ρ : X → H and Ψ : X → O(H) are
continuous. To simplify the notation, we write Tx instead of T (x). For each x ∈ X and k ∈ N,
define the kth twisted Birkhoff-sum of the cocycle ρ as

Sk(ρ)(x) :=

k−1
∑

i=0

Ψ(T k−1x)Ψ(T k−2x) · · ·Ψ(T i+1x)ρ(T ix).

As it is easy to check, the kth iterate of (x, v) ∈ X×H under the skew map (x, v) 7→ (Tx,Ψ(x)v+
ρ(x)) coincides with

(

T kx, I(k, x)v
)

=
(

T kx,Ψ(T k−1x) · · ·Ψ(Tx)v + Sk(ρ)(x)
)

.

Assume that there is a bounded orbit for this map, hence a continuous solution ϕ to the cohomo-
logical equation

ϕ(Tx) = Ψ(x)ϕ(x) + ρ(x). (18)

Then we have

Sk(ρ)(x) =

k−1
∑

i=0

Ψ(T k−1x) · · ·Ψ(T i+1x)ρ(T ix)

=
k−1
∑

i=0

Ψ(T k−1x) · · ·Ψ(T i+1x)
[

ϕ(T i+1x)−Ψ(T ix)ϕ(T ix)
]

=
k−1
∑

i=0

Ψ(T k−1x) · · ·Ψ(T i+1x)ϕ(T i+1x)−
k−1
∑

i=0

Ψ(T k−1x) · · ·Ψ(T ix)ϕ(T ix)

= ϕ(T kx)−Ψ(T k−1x) · · ·Ψ(x)ϕ(x).

This implies that, as expected, the sequence of functions Sk(ρ) is uniformly bounded, hence the
orbit of every (x, v) is bounded. Notice that if Ψ is constant, then the preceding relation becomes

Sk(ρ)(x) = ϕ(T kx)−Ψk−1ϕ(x).

Let us concentrate on the particular case where H = ℓ2(Z) and Ψ is the (bilateral) shift on the
canonical basis {vn} of H (see Example 17). Assuming that ϕ : X → H solves (18), fix x0 ∈ X
and set x := T−kx0 and v := ϕ(T−kx). Then we have

ϕ(x0) = I(k, T−kx0)ϕ(T
−kx0).

Taking the inner product against vn, we get

〈

ϕ(x0), vn
〉

=
〈

Ψkϕ(T−kx0), vn
〉

+
〈

k−1
∑

j=0

Ψjρ(T−(j+1)x0), vn

〉

=
〈

Ψkϕ(T−kx0), vn
〉

+

k−1
∑

j=0

ρn−j(T
−(j+1)x0).
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Since ϕ is strongly continuous, the set Ψk(ϕ(X)) weakly converges to {0} in the Hausdorff sense.
As a consequence, the first term above, namely 〈Ψkϕ(T−kx0), vn〉, converges to zero as n goes to
infinite. Therefore, ϕ has the following form:

ϕ(x) =
∑

n∈Z

(

∞
∑

j=0

ρn−j

(

T−(j+1)x
)

)

vn. (19)

A closely related but slightly different case is that of a positive shift, that is, when T : X → X
is a homeomorphism all of whose forward orbits are dense, and Ψ is constant and coincides with
the shift on the canonical basis {vn} of H ∼ ℓ2(N0). (Notice that Ψ is not surjective). Indeed,
among all (non-neccessarily continuous) sections ϕ : X → H, there is a unique solution to (18),
and its expression is given by

ϕ(x) :=
∞
∑

j=0

[

j
∑

r=0

ρj−r

(

T−(r+1)x
)

]

vj . (20)

To see that ϕ(x) belongs to H, we first claim that for all y ∈ X and all n ∈ N, we have

∥

∥I(n, y)0
∥

∥ ≤ 2C. (21)

Indeed, letting M be the closure of the (forward) orbit of (x0, 0) (where the topology on H is the
weak one), we have ‖I(n, y)(v)‖ ≤ C for all (y, v) ∈M and all n ∈ N. Since the forward orbits of
T are dense, each fiber My is nonempty, hence we may take v = v(y) ∈ My. Using the triangular
inequality and the fact that I(n, y) is an isometry, we get

‖I(n, y)0‖ ≤ ‖v‖+ ‖I(n, y)v‖ ≤ 2C.

Now, a simple computation yields

I(n, y)0 =
n−1
∑

r=0

Ψrρ
(

T−(r+1)(T ny)
)

for all n ∈ N and all y ∈ X . Using (21), we obtain

∞
∑

j=0

∣

∣

∣

∣

∣

n−1
∑

r=0

ρj−r

(

T−(r+1)(T ny)
)

∣

∣

∣

∣

∣

2

≤ 4C2, (22)

where we let ρk ≡ 0 for k < 0. Given N ∈ N, we choose n > N and y = T−nx in (22), and we
obtain

N
∑

j=0

∣

∣

∣

∣

∣

j
∑

r=0

ρj−r

(

T−(r+1)x
)

∣

∣

∣

∣

∣

2

≤ 4C2.

Since this holds for all N ∈ N, we finally get ‖ϕ(x)‖ ≤ 2C. In particular, ϕ(x) belongs to H.
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To see that ϕ is skew invariant, we just compute:

I(1, x)ϕ(x) = Ψϕ(x) + ρ(x)

= Ψ

(

∞
∑

j=0

[

j
∑

r=0

ρj−r

(

T−(r+1)x
)

]

vj

)

+
∞
∑

j=0

ρj(x)vj

=

∞
∑

j=0

[

j
∑

r=0

ρj−r

(

T−(r+1)x
)

]

vj+1 +

∞
∑

j=0

ρj(x)vj

=

∞
∑

j=1

[

j−1
∑

r=0

ρj−1−r

(

T−(r+1)x
)

]

vj +

∞
∑

j=0

ρj(x)vj

=

∞
∑

j=1

[

j−1
∑

r=0

ρj−1−r

(

T−(r+1)x
)

]

vj +

∞
∑

j=0

ρj(x)vj

=
∞
∑

j=1

[

j
∑

r=1

ρj−r

(

T−rx
)

]

vj +
∞
∑

j=0

ρj(x)vj

=
∞
∑

j=0

[

j
∑

r=0

ρj−r

(

T−(r+1)(Tx)
)

]

vj

= ϕ(Tx).

To see that ϕ is the unique skew-invariant function, we consider another such a function ϕ∗ :
X → H. For all x ∈ X we have

ϕ∗(Tx)− ϕ(Tx) = I(1, x)ϕ∗(x)− I(1, x)ϕ(x) = Ψϕ∗(x)−Ψϕ(x),

that is, (ϕ∗ − ϕ)(Tx) = Ψ(ϕ∗ − ϕ)(x). Defining φj : X → R by letting

∞
∑

j=0

φj(x)vj := ϕ(x)− ϕ∗(x),

this yields φj(x) = φj−n(T
−nx) for all n ∈ N. For n > j, this implies that φj(x) = 0, hence

ϕ∗ = ϕ.
Finally, since we know that there exists a continuous skew-invariant section, the expression

(20) defines a continuous function.

Remark 30 Since we know that the map x 7→ ctr(Mx) is skew invariant for any skew-invariant
bounded subset M ⊂ X × H whose projection on the first coordinate is onto, the vector ϕ(x)
above must coincide with ctr(Mx) for all x ∈ X .
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remarks.

D. Coronel was funded by the Fondecyt Post-doctoral Grant 3100092, A. Navas was funded by
the PBCT-Conicyt Research Project ADI-17 and the Math-AMSUD Project DySET, and M. Ponce
was funded by the Fondecyt Grant 11090003 and the Math-AMSUD Project DySET.

References

[1] G. Atkinson. A class of transitive cylinder transformations. J. London Math. Soc. 17 (1978),
263-270.

[2] U. Bader, T. Gelander & N. Monod. A fixed point theorem for L1 spaces. Preprint,
arXiv:1012.1488.

[3] U. Bader, A. Furman, T. Gelander & N. Monod. Property (T) and rigidity for actions
on Banach spaces. Acta Math. 198 (2007), 57-105.

[4] R. Baire. Leçons sur les fonctions discontinues. Les Grands Classiques Gauthier-Villars.
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Dpto de Matemática y C.C., USACH
Alameda 3363, Estación Central, Santiago, Chile
E-mail: andres.navas@usach.cl

Mario Ponce
Facultad de Matemáticas, PUC
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