
INTRODUCTION TO COMPUTABILITY ON EUCLIDEAN

SPACE AND APPLICATIONS TO DYNAMICAL SYSTEMS

CRISTÓBAL ROJAS

Abstract. These notes were written as part of a mini course given at the

Institut de Mathematiques de Toulouse in march 2018. They are meant to
introduce working mathematicians to the basic concepts and techniques in-

volved in the theory of computability in analysis. We illustrate them with two

applications to dynamical systems theory.

Contents

1. Computability over the integers 1
1.1. Algorithms and computable functions 1
1.2. Computable and semi-computable sets of natural numbers 2
2. Computable real numbers 3
2.1. Uniform computability 4
3. Computability over Euclidean space 6
3.1. Open sets and functions 6
3.2. Compactness 7
4. Applications to dynamical systems 8
4.1. Empty interior Julia sets are computable 8
4.2. Limit sets of computable maps 9
4.3. A computable map without computable invariant measures 10
References 11

1. Computability over the integers

1.1. Algorithms and computable functions. The notion of algorithm was for-
malized in the 30’s, independently by Post, Markov, Kleen, Church, and, most fa-
mously, Turing. Each of them proposed a model of computation which determines
a set of integer functions that can be computed by some mechanical or algorithmic
procedure. Later on, all these models were shown to be equivalent, so that they
define the same class of integer functions, which are now called computable (or re-
cursive) functions. It is standard in Computer Science to formalize an algorithm as
a Turing Machine [5]. We will not define it here, and instead will refer an interested
reader to any standard introductory textbook in the subject. It is more intuitively
familiar, and provably equivalent, to think of an algorithm as a program written
in any standard programming language, and this is the definition that we will use
when speaking of algorithms. It is clear that in any such programming language
there is only a countable number of possible programs. Fixing the language, we
can enumerate them all (for instance, lexicographically). Given such an ordered

1

2 CRISTÓBAL ROJAS

list (An)∞n=1 of all algorithms, the index n is usually called the Gödel number of
the algorithm An.

We want to see algorithms as computing functions over the integers. Note that
algorithms are not required to halt at every input. Thus, some of them compute
functions that are defined only on a subset of N. A function f : D(f)→ N, which
is defined on a subset D(f) ⊂ N, is called computable if there exists an algorithm
A which outputs f(n) on input n ∈ D(f), and runs forever if the input n /∈ D(f).
When the function is defined at every input, and thus A halts at every input,
we will say it is a total computable function. It is easy to see that a function is
total computable if and only if there is an algorithm A which, on the empty input,
enumerates the sequence (kn)n such that f(n) = kn. That is, A never halts and
keeps “printing” the numbers f(n), in the right order. Computable functions of
several variables are defined in a similar way.

It is important to keep in mind that the concept of computable function is
extremely robust. In fact, it is widely accepted that any reasonable way of defining
the intuitive idea of “function computable by a mechanical procedure” will result
in an equivalent definition. This fact is known as the Church-Turing thesis.

Let us illustrate this thesis with a striking example. Suppose we want to define a
collection of functions over the integers corresponding to all “functions computable
by a mechanical procedure”. What mechanical procedures should we allow? Well,
the following (important and profound) result tells us that the full computational
power of algorithms is already contained in any simple mechanical procedure allow-
ing to evaluate polynomials over the integers (and with integer coefficients). (See
[3]).

Theorem 1.1. A function f is computable if and only if there exist a polynomial
P (x; y; t) ∈ Z[x, y, t] such that P has a zero exactly when y = f(x). (In particular,
f must be defined at x).

1.2. Computable and semi-computable sets of natural numbers. A set
E ⊆ N is said to be computable if its characteristic function χE : N → {0, 1} is
computable. That is, if there is an algorithm A : N → {0, 1} that, upon input n,
halts and outputs 1 if n ∈ E or 0 if n /∈ E. Such an algorithm allows to decide
whether or not a number n is an element of E. Computable sets are also called
recursive or decidable.

Since there are only countably many algorithms, there exist only countably many
computable subsets of N. A well known “explicit” example of a non computable
set is given by the Halting set

H := {i such that Ai halts on the empty input}.
We will see a proof of this fact in the next section.
On the other hand, it is easy to describe an algorithmic procedure which, on

input i, will halt if i ∈ H, and will run forever if i /∈ H. Such a procedure can
informally be described as follows:

on input i emulate the algorithm Ai; if Ai halts then halt.

In general, we will say that a set E ⊂ N is lower-computable (or semi-decidable)
if there exists an algorithm AE which on an input n halts if n ∈ E, and never halts
otherwise. Thus, the algorithm AE can verify the inclusion n ∈ E, but not the

INTRODUCTION TO COMPUTABILITY IN ANALYSIS 3

inclusion n ∈ Ec. We say that AE semi-decides n ∈ E (or semi-decides E). The
complement of a lower-computable set is called upper-computable.

The following is an easy exercise:

Proposition 1.2. A set is computable if and only if it is simultaneously upper-
and lower-computable.

It is elementary to verify that lower-computability is equivalent to recursive
enumerability:

Definition 1.1. A set E ⊂ N is recursively enumerable (r.e.) if there is a com-
putable function f : N → N such that E = f(N). That is, E is the range of a
computable function.

In other words, E is r.e. if there is an algorithm A which outputs a sequence of
natural numbers (ni) such that E = ∪{ni}. The algorithm A ignores any input, it
never halts, and keeps “printing” the numbers ni. We say that A enumerates E.

Proposition 1.3. A set E ⊂ N is lower-computable if and only if it is recursively
enumerable.

Proof. Assume first that E is recursively enumerable and let n ∈ N . To semi-decide
whether n ∈ E, simply start enumerating the sequence ni and halt if we we find i
such that ni = n. Now assume E is lower-computable and let A be the algorithm
that halts on input n iff n ∈ E. To enumerate E, for each m > 0 we simulate m
steps of A on all inputs n ≤ m. This serves to simulate a parallel computation
in which we run A on all possible inputs n > 0. We then output, one by one, all
integers on which A halts. This is the desired enumeration. �

Note that the Halting set H is an example of a lower-computable set which is
not computable. The following is a useful simple observation.

Proposition 1.4. Let E be an infinite recursively enumerable set. If there is an
algorithmic enumeration of E = ∪i{ni} such that ni < nj for every i < j, then E
is computable.

Proof. Let n ∈ N. In order to decide whether n ∈ E, enumerate the sequence ni
until we either see i such that ni = n, in which case n ∈ E, or we see i such that
ni > n, in which case n /∈ E. �

2. Computable real numbers

Strictly speaking, algorithms only work on natural numbers, but this can be
easily extended to the objects of any countable set once a bijection with integers
has been established. The operative power of an algorithm on the objects of such
a numbered set obviously depends on what can be algorithmically recovered from
their numbers. For example, the set Q of rational numbers can be injectively
numbered Q = {q0, q1, . . .} in an effective way: the number i of a rational a/b
can be computed from a and b, and vice versa1. The abilities of algorithms on
integers are then transferred to the rationals. For instance, algorithms can perform
algebraic operations and decide whether or not qi > qj (in the sense that the set
{(i, j) : qi > qj} is decidable). We will fix such a numbering of Q once and for all.

1For example by using the one-to-one encoding of N2 into N: e(i, j) = 1
2

(i + 1)(i + j + 1) + j.

4 CRISTÓBAL ROJAS

The development of the theory of computable functions over real numbers was
pioneered by Banach and Mazur [1, 4], and is now known under the name of Com-
putable Analysis. Let us begin by giving the modern definition of the notion of
computable real number, which goes back to the seminal paper of Turing [5].

Definition 2.1. A real number x is called

• computable if there is a computable function f : N→ Q such that

|f(n)− x| < 2−n;

• lower-computable if there is a computable function f : N→ Q such that

f(n)↗ x;

• upper-computable if there is a computable function f : N→ Q such that

f(n)↘ x.

A point in Rn is computable if all its coordinates are computable real numbers. A
point z ∈ C is computable if both Re z and Im z are computable.

Algebraic numbers or the familiar constants such as π, e, or the Feigembaum
constant are all computable. However, the set of all computable numbers RC is
necessarily countable, as there are only countably many computable functions. The
following is an easy exercise.

Proposition 2.1. A real number x is computable if and only if it is both upper and
lower-computable.

Example 2.1. Let H be the halting set. It is not hard to see that the number

x =
∑
i∈H

2−i

is lower computable but not upper computable. Indeed, being able to compute x
would allow to compute H. On the other hand, by enumerating H we can compute
a sequence of dyadic numbers whose supremum is x.

2.1. Uniform computability. We will use algorithms to define computability no-
tions of more general infinite objects. Depending on the context, these objects will
take particular names (computable, lower-computable, etc...) but the definition
will always follow the scheme:

an object x is computable if there exists an algorithm A satisfying the property
P(A, x).

For example, a real number x is computable if there exists an algorithm A which
computes a function f : N → Q satisfying |f(n) − x| < 2−n for all n. Each time
such a definition is made, a uniform version will be implicitly defined:

the objects {xγ}γ∈Γ are computable uniformly in γ if there exists a single algorithm
A that computes the whole sequence in the sense that, for all γ ∈ Γ, A simulates
an algorithm Aγ satisfying the property P(Aγ , xγ).

In our example, a sequence of reals (xi)i is computable uniformly in i if there exists
A with two natural inputs i and n which computes a function f(i, n) : N×N→ Q
such that for all i ∈ N, the values of the function fi(·) := f(i, ·) satisfy

|fi(n)− xi| < 2−n for all n ∈ N.

INTRODUCTION TO COMPUTABILITY IN ANALYSIS 5

Proposition 2.2. The set RLC of all lower-computable real numbers is uniformly
computable. That is, there is sequence of uniformly lower-computable numbers (xi)i
such that

⋃
i{xi} = RLC . The same holds for the upper-computable numbers.

Proof. We describe the algorithm A computing a function f : N×N→ Q such that
xi = supn f(i, n). On input i, A will output a sequence of rationals (qn)n to be
interpreted as the values of f(i, n). On input i, A starts by printing q0 = 0. Then,
it simulates algorithm Ai. At step n of the simulation, if Ai outputs an integer l,
then A outputs qn = supk≤l qk where qk are the numbers already printed so far.
If Ai does not output anything, then A just outputs qn = qn−1. Let x be a lower
computable number. Then, by definition, there is an algorithm printing a sequence
of rationals whose supremum is x. Then there is i such that Ai outputs precisely
this sequence. If follows that x = xi. �

Note that any collection of objects each of which can be produced by an algo-
rithm, is necessarily countable. In the case that there is a single algorithm producing
them all, as for the set RLC above, we say that the collection is effectively countable,
or recursively enumerable. We note that not all collections of computable objects
are effectively countable.

Theorem 2.3. The collection of all computable real numbers RC is not effectively
countable. That is, there is no sequence of uniformly computable reals (xi)i such
that RC =

⋃
i{xi}.

Proof. Let f : N×N→ Q be a computable function uniformly computing a sequence
(xi)i>0. Using a diagonal argument, it is not hard to see that we can use f to
compute a real number x such that x 6= xi for all i, and therefore RC 6=

⋃
i{xi}.

Indeed, we compute x by inductively producing intervals In such that

• In+1 ⊂ In,
• |In+1| < |In|/3, and
• xi /∈ In for all i ≤ n.

Assuming that this computation can be done, it is clear that ∩nIn = {x} is a
computable point and that x 6= xi for all i. The computation is as follows. Start
by defining I0 = [0, 1]. Suppose In has ben computed. We then use f to produce
a d = |In|/6-approximation q of xn+1, and consider the interval J = (q − d, q + d)
(which contains xn+1). We then let In+1 be any subinterval of In of length less
than |In|/3 which is disjoint from J .

�

Corollary 2.4. The Halting set H := {i such that Ai halts on the empty input} is
not computable.

Proof. Suppose that there is an algorithm AH which, upon input i, decides whether
the algorithm Ai halts on the empty input. We show how to use AH to enumerate
the collection of all computable real numbers, contradicting Theorem 2.3. First
note that we can enumerate all the algorithms Aj that print an infinite sequence
of rationals. Given such an algorithm, say Aj , enumerating a sequence (qn)n, we
consider the algorithm CAUCHYj that on the empty input checks, for every n,
whether |qn − qn−1| > 2−n, and halts if it finds such an n. We now can use AH
to enumerate all algorithms (Aji)i such that CAUCHYji does not halt. We let xi
be the real number computed by Aji . Let x be a computable number. Then there

6 CRISTÓBAL ROJAS

is an algorithm that computes a sequence of rationals qn having x as a limit and
satisfying |qn− qn−1| ≤ 2−n. Thus this algorithm is one of the Aji , and x = xi. �

3. Computability over Euclidean space

All the definitions we have given for R in the previous sections extend naturally
to Rn. Recall that we had fixed an effective enumeration of the rational numbers
Q = {q0, q1, ...}. This enumeration induces an enumeration of all the rational open
intervals I0, I1, ... or, more generally, the rational balls B0, B1, Note that it is
effective in that we can recover the centres and the radii from the indexes, and
vice-versa. We fix such enumeration as well.

3.1. Open sets and functions. For simplicity, we will present the theory over C.

Definition 3.1. An open set A ⊂ C is said to be recursively enumerable or lower
computable if there is a computable function f : N→ N such that

A =
⋃
n

If(n).

It is an instructive exercise to verify that finite intersections and infinite unions
of uniformly lower computable open sets are again lower computable, and that the
collection of all lower computable open sets is effectively countable.

Example 3.1. Let r be a lower computable number. Then the ball B(0, r) is a
lower computable open set. Indeed, if f : N → Q is a computable function such
that r = supn f(n), then

I =
⋃
n

B(0, f(n)).

Remark 3.1. For any lower computable open set A there is an algorithm that semi-
decides the property x ∈ A in the sense that, when provided with arbitrarily good
approximations of x, it halts if and only if x ∈ A. In fact, it can be shown that
semi-decidability of x ∈ A is equivalent to A being lower-computable.

Definition 3.2. A function f : C → C is computable if the sets f−1Bn are lower
computable open sets, uniformly in n.

Proposition 3.2. A function f is computable if and only if there is an algorithm
which, when provided with arbitrarily good approximations of x, computes arbitrarily
good approximations of f(x).

Proof. Suppose f is computable and let x be provided with arbitrarily good preci-
sion. Let ε be the precision at which we want to compute f(x). We start enumer-
ating all rational balls B of diameter ε, and lower computing their preimages f−1B
while semi-deciding whether x ∈ f−1B. This procedure must halt for some B, and
we output its center (or any other rational point in its interior). This is the desired
approximation. Conversely, suppose we can compute f(x) at any given precision.
Let B be a rational ball. Note that we can semi-decide whether f(x) ∈ B, which is
equivalent to semi-decide whether x ∈ f−1B. It follows that the preimages f−1B
are uniformly semi-decidable. �

INTRODUCTION TO COMPUTABILITY IN ANALYSIS 7

3.2. Compactness. Computability of compact subsets of Rk is defined by follow-
ing the same principle: having an algorithm to produce finite approximations at
any prescribed accuracy. Let us say that a point in Rk is a dyadic rational of size n
if it is of the form v̄ · 2−n, where v̄ ∈ Zk and n ∈ N. Recall that Hausdorff distance
between two compact sets K1, K2 is

distH(K1,K2) = inf
ε
{K1 ⊂ Kε

2 and K2 ⊂ Kε
1},

where

Kε =
⋃
z∈K

B(z, ε)

stands for the ε-neighbourhood of a set K.

Definition 3.1. We say that a compact set K b Rk is computable if there exists an
algorithm M with a single input n ∈ N, which outputs a finite set Cn of dyadic
rational points in Rk such that

distH(Cn,K) < 2−n.

An equivalent way of defining computability, which is more convenient for dis-
cussing computational complexity, is the following. For x̄ = (x1, . . . , xk) ∈ Rk let
the norm ||x̄||1 be given by

||x̄||1 = max |xi|.

Definition 3.2. A compact set K b Rk is computable if there exists an algorithm
M which, given as input (v̄, n) representing a dyadic rational point x in Rk of size
n, outputs 0 if x is at distance strictly more than 2 · 2−n from K in || · ||1 norm,
outputs 1 if x is at distance strictly less than 2−n from K, and outputs either 0 or
1 in the “borderline” case.

In the familiar context of k = 2, such an algorithm can be used to “zoom into”
the set K on a computer screen with W × H square pixels to draw an accurate
picture of a rectangular portion of K of width W · 2−n and height H · 2−n. M
decides which pixels in this picture have to be black (if their centers are 2−n-close
to K) or white (if their centers are 2 ·2−n-far from K), allowing for some ambiguity
in the intermediate case.

The above definition can be naturally split into two tasks: semi-deciding whether
a pixel should be white, or whether it should be black. The following definition
captures this idea.

Definition 3.3. A compact set K is called:

• upper computable if we can semi-decide, uniformly for any rational interval
I, whether its closure cl I is disjoint from K.

• lower computable if we can semi-decide, uniformly for any rational interval
I, whether I ∩K 6= ∅.

It is an instructive exercise to verify that a compact set K is computable if and
only if it is simultaneously lower and upper computable.

Another natural definition for compact sets is the following algorithmic version
of the“having a finite subcover” property.

Definition 3.4. A compact set K ⊂ C is recursively compact if there exists an
algorithm which takes as input any finite list of rational balls {Bn1

, . . . ,Bnk
} and

8 CRISTÓBAL ROJAS

halts if and only if they form a cover K. In this case, we say that the relation

K ⊂
⋃k
i=1Bni

is semi-decidable.

It is easy to see that the unit interval [0, 1] is recursively compact and that,
more generally, a closed ball B(x, r) ⊂ C with rational center and rational (or
computable) radius is recursively compact.

Remark 3.3. Note that, since lower computable open sets are described by lists of
rational balls, one has that K ⊂ C is recursively compact if and only if we can
uniformly semi-decide whether K ⊂ U for any lower computable open set U .

The following are two very useful observations.

Lemma 3.4. If a finite set is recursively compact, then their elements are com-
putable points.

Proof. Assume there is only one point. To compute it at precision ε, just enumerate
all balls of radious ε and semi-decide whether they contain the point. A similar
argument applies when there is more than one point. �

Lemma 3.5. Let K ⊂ C be a compact set. Then K is upper computable if and
only if it is recursively compact.

Proof. Let B be a large enough rational ball containing K. Let U be a lower
computable open set. Note that

K ⊂ U ⇐⇒ B ⊂ U ∪ C \K.

Since B is recursively compact, one can semi-decide the right hand side exactly
when K is upper computable. �

As a simple corollary we obtain:

Corollary 3.6. If a computable function f : C → C has finitely many zeros, then
they are all computable. In particular, all algebraic numbers are computable.

Proof. Note that one can semi-decide whether f(z) 6= 0. Thus, the set of zeros is
upper computable and the result follows from the two previous lemmas. �

4. Applications to dynamical systems

We now give two applications of the previous theory. Namely, that empty interior
Julia sets are always computable, and that there exists computable maps of the
circle exhibiting a completely non computable statistical behaviour.

4.1. Empty interior Julia sets are computable. For a complex polynomial
map P , let us recall that the filled Julia set K(P) corresponds to the set of points
z ∈ C whose orbit under iterations by P remains bounded, and that the Julia set
J(P) is defined as the boundary of K(P).

Proposition 4.1. The filled Julia set K(P) of a computable polynomial P on C is
always upper computable.

Proof. For, letB be a closed rational ball containingK. Then, C\K =
⋃
n∈N P

−n(C\
B) which, since C \B is a recursively enumerable open set and P is computable, is
an upper computable set. �

INTRODUCTION TO COMPUTABILITY IN ANALYSIS 9

Note that, in particular, the previous result shows the mapping c 7→ Kc is upper
semicontinuous.

Proposition 4.2. The Julia set J(P) is always a lower computable set.

Proof. We need to semi-decide whether a rational ball intersects J(P). Note that
this can be easily achieved whenever we are able to compute a dense sequence of
points in J(P). A simple way to compute such a sequence is by computing the
set of repelling periodic points of P , which are known to be dense in J(P) by a
result of Fatou. Note that since there are finitely many periodic points of a given
period we can, by corollary 3.6, compute them all. Moreover, since the multiplier
λ(z) = |dP p(z)| of a period p point z is computable, we can semidecide whether
λ(z) > 1, and so enumerate only those that are repelling. �

Again, note that in particular we obtain that the mapping c 7→ Jc is lower
semicontinuous.

We can now conclude: since a compact set is computable iff it is simultaneously
upper and lower computable, we obtain:

Corollary 4.3. Let P be a computable complex polynomial such that the filled Julia
set K(P) has empty interior. Then, the Julia set J(P) = K(P) is computable.

However, we mention that as shown by Braverman and Yampolsky, in general,
Julia sets may be non computable.

Theorem 4.4. There exists computable parameters λ, with |λ| = 1, such that the
Julia set of the polynomial λz + z2 is not computable.

4.2. Limit sets of computable maps. The goal of this section is to show that
any upper computable compact set is the set of limit points of a computable map.

Theorem 4.5. Let K ⊂ (0, 1) be a compact upper computable set. There exists
a computable function T : S1 → S1 having K as the limit set. That is, such that
K =

⋃
x∈S1 ω(x) where ω(x) stands for the set of accumulation points of {Tnx}n≥0.

Proof. Let V = (0, 1) \ K be the complement of K in [0, 1]. Since V is lower-
computable, there are computable sequences {ai, bi}i≥2 such that 0 < ai < bi < 1
and V =

⋃
i(ai, bi).

ai bi

fi

Figure 1. Left: a map fi, right: the map T1

Let us define non-decreasing, uniformly computable functions fi : [0, 1] → [0, 1]
such that

fi(x) > x if x ∈ (ai, bi) and fi(x) = x otherwise.

10 CRISTÓBAL ROJAS

For instance, we can set

fi(x) = 2x− ai on

[
ai,

ai + bi
2

]
, and

fi(x) = bi on

[
ai + bi

2
, bi

]
.

As neither 0 nor 1 belongs to K, there is a rational number ε > 0 such that
K ⊆ [ε, 1− ε]. Let us define f : [0, 1]→ R by

f(x) =

 x on [ε, 1− ε],
2x− (1− ε) on [1− ε, 1]
2ε on [0, ε]

We then define t(x) : [0, 1]→ R by

t(x) =
f

2
+
∑
i≥2

2−ifi.

By construction, the function t(x) is computable and non-decreasing, and t(x) > x
if and only if x ∈ [0, 1] \K. As

t(1) = f(1) = 1 + ε = 1 + t(0),

we can take the quotient

T (x) ≡ t(x) modZ.
It is easy to see that T moves all points towards the set K. More precisely, every

point x ∈ K is fixed under T , and the orbit of every point x /∈ K converges to
inf{y ∈ K ∩ [x, 1]}.

�

4.3. A computable map without computable invariant measures. The cel-
ebrated Krylov-Bogolyubov theorem states that every continuous map over a com-
pact metric space admits an invariant Borel probability measure. The original proof
of this result is not constructive. The result presented below can be interpreted as
the fact that the lack of constructivity in their proof is somehow intrinsic to the
theorem – there is in fact no constructive proof to be found.

Definition 4.1. A probability measure µ on S1 is computable if we can uniformly
compute the integrals

∫
fidµ of uniformly computable sequences of functions (fi)i.

Recall that the support of a measure µ, denoted supp(µ) is defined as the set of
points for which every neighbourhood has positive measure. This is a closed set as
its complement is made from all open sets having zero measure. Thus, an interval
I intersects supp(µ) if and only if µ(I) > 0.

Proposition 4.6. Let µ be a computable Borel measure on [0, 1]. Then the support
of µ contains a computable point x ∈ X.

Proof. We outline the proof here and leave the details to the reader. First, note
that by approximating from below the indicator function of a rational interval (a, b)
by computable functions one can lower compute its measure µ(a, b). Thus, one
can uniformly semidecide whether a given rational interval has positive measure,
which is the same as saying that the rational interval intersects the support of µ.
This implies that the support of µ is a lower computable compact set. It follows

INTRODUCTION TO COMPUTABILITY IN ANALYSIS 11

that one can compute, for any rational interval I intersecting the support, a point
x ∈ I ∩ supp(µ). Indeed, an exhaustive search can be used to find a sequence of
intervals Ii with the following properties:

• Ii ∩ supp(µ) 6= ∅;
• Ii+1 ⊂ Ii;
• |Ii+1| < |Ii|/2.

We let {x} = ∩iIi. Clearly, x is computable and satisfies x ∈ supp(µ).
�

Proposition 4.7. There exists a lower-computable open set V ⊂ (0, 1) such that
(0, 1) \ V 6= ∅ and V contains all computable real numbers in (0, 1).

Proof. Consider an algorithm A which at step m emulates the first m algorithms
Ai(i), i ≤ m with respect to the Gödel ordering for m steps. That is, the i-th
algorithm in the ordering is given the number i as the input parameter. From time
to time, an emulated algorithm Ai(i) may output a rational number xi in (0, 1).
Our algorithm A will output an interval

Li = (xi − 3−i/2, xi + 3−i/2) ∩ (0, 1)

for each term in this sequence. The union V = ∪Li is a lower-computable set. It is
easy to see from the definition of a computable real that V ⊃ RC ∩ (0, 1). If x ∈ RC
then there is a machine An(j) that on input j outputs a 3−j/4-approximation of x.
Thus the execution of An(n) will halt with an output q such that |x− q| < 3−n/4,
and x will be included in V . On the other hand, the Lebesgue measure of V is
bounded by 1/2, and thus does not cover all of [0, 1]. �

Theorem 4.8. There exists a computable map T : S1 → S1 which does not ad-
mit computable invariant measures. That is, if µ is T -invariant, then µ is not
computable.

Proof. Let V be lower computable set from Proposition 4.7, and let K = (0, 1) \V .
Note that K is an upper computable set. By Theorem 4.5, there exist T : S1 → S1

having K as limit set. By construction of T , for any interval J b V , all but finitely
many T -translates of J are disjoint from J . Hence, no finite invariant measure of T
can be supported on J . Thus the support of every T -invariant measure is contained
in K. By Proposition 4.6, no such measure can be computable. �

References

[1] S. Banach and S. Mazur. Sur les fonctions calculables. Ann. Polon. Math., 16, 1937.
[2] M. Braverman and M. Yampolsky. Non-computable Julia sets. Journ. Amer. Math. Soc.,

19(3):551–578, 2006.
[3] Yu. I. Manin. A course in Mathematical Logic for Mathematicians. Graduate Texts in Math-

ematics, Springer, 2010.

[4] S. Mazur. Computable Analysis, volume 33. Rosprawy Matematyczne, Warsaw, 1963.

[5] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings, London Mathematical Society, pages 230–265, 1936.

[6] K. Weihrauch. Computable Analysis. Springer-Verlag, Berlin, 2000.

	1. Computability over the integers
	1.1. Algorithms and computable functions
	1.2. Computable and semi-computable sets of natural numbers

	2. Computable real numbers
	2.1. Uniform computability

	3. Computability over Euclidean space
	3.1. Open sets and functions
	3.2. Compactness

	4. Applications to dynamical systems
	4.1. Empty interior Julia sets are computable
	4.2. Limit sets of computable maps
	4.3. A computable map without computable invariant measures

	References

