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Département d’Informatique, École Normale Supérieure de Paris
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Abstract

We extend the notion of randomness (in the version introduced by
Schnorr) to computable Probability Spaces and compare it to a dynami-
cal notion of randomness: typicality. Roughly, a point is typical for some
dynamic, if it follows the statistical behavior of the system (Birkhoff’s
pointwise ergodic theorem). We prove that a point is Schnorr random
if and only if it is typical for every mixing computable dynamics. To
prove the result we develop some tools for the theory of computable prob-
ability spaces (for example, morphisms) that are expected to have other
applications.

1 Introduction

The roots of algorithmic randomness go back to the work of von Mises in the 20th
century. He suggested a notion of individual infinite random sequence based
on limit-frequency properties invariant under the action of selection functions
from some “acceptable” set. The problem was then to properly define what
an “acceptable” selection function could be. Some years later, the concept of
computable function was formalized, providing a natural class of functions to
be considered as acceptable. This gave rise to Church’s notion of computable
randomness. Nevertheless, substantial understanding was achieved only with
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the works of Kolmogorov [7], Martin-Löf [8], Levin [17] and Schnorr [9] and
since then, many efforts have contributed to the development of this theory
which is now well established and intensively studied.

There are several different possible definitions, but it is Martin-Löf’s one
which has received most attention. This notion can be defined, at least, from
three different points of view:

1. measure theoretic. This was the original presentation by Martin-Löf ([8]).
Roughly, an infinite sequence is random if it satisfies all “effective” prob-
abilistic laws (see definition 3.1.1).

2. compressibility. This characterization of random sequences, due to Schnorr
and Levin (see [17, 10]), uses the prefix-free Kolmogorov complexity: ran-
dom sequences are those which are maximally complex.

3. predictability. In this approach (started by Ville [13] and reintroduced to
the modern theory by Schnorr [10]) a sequence is random if, in a fair bet-
ting game, no “effective” strategy (“martingale”) can win an unbounded
amount of money against it.

In [9], a somewhat broader notion of algorithmic randomness (narrower no-
tion of probabilistic law) was proposed: Schnorr randomness. This notion re-
ceived less attention over the years: Martin-Löfs definition is simpler, leads to
universal tests, and many equivalent characterizations (besides, Schnorr’s book
is not in English. . . ). Recently, Schnorr randomness has begun to receive more
attention. The work [2] for instance, characterizes it in terms of Kolmogorov
complexity.

In the present paper, first we extend Schnorr randomness to arbitrary com-
putable probability spaces and develop some useful tools. Then, taking a dynam-
ical systems point of view, we introduce yet another approach to the definition of
randomness: typicality. Roughly, a point is typical for some measure-preserving
ergodic dynamic, if it follows the statistical behavior of the system (given by
Birkhoff’s pointwise ergodic theorem) with respect to every bounded continous
function used to follow its trajectory (or equivalently, every computable func-
tion, see Definition 3.2.1). We then show that:

Theorem. In any computable probability space, a point is Schnorr random if
and only if it is typical for every mixing computable dynamical system.

The paper is organized as follows: Section 2 presents all needed concepts
of computability theory and computable measure theory over general metric
spaces. Parts of this section, for example on µ-computable functions, are new
and should be of independent interest. Section 3.1 generalizes Schnorr random-
ness and studies some useful properties, after which we introduce the notion of
typicality. Section 3.3 is devoted to the proof of our main result.
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2 Computability

In classical recursion theory, a set of natural numbers is called recursively
enumerable (r.e. for short) if it is the range of some partial recursive function.
That is if there exists an algorithm listing (or enumerating) the set.

Strictly speaking, recursive functions only work on natural numbers, but this
can be extended to the objects (thought of as “finite” objects) of any countable
set, once a numbering of its elements has been chosen. We will sometimes use
the word algorithm instead of recursive function when the inputs or outputs
are interpreted as finite objects. The operative power of an algorithm on the
objects of such a numbered set obviously depends on what can be effectively
recovered from their numbers.

Examples 2.0.1.

1 Nk can be numbered in such a way that the k-tuple of number i can be com-
puted from i and vice versa.

2 The set Q of rational numbers can be injectively numbered Q = {q0, q1, . . .} in
an effective way: the number i of a rational a/b can be computed from a and b,
and vice versa. We fix such a numbering.

All through this work, we will use recursive functions over numbered sets to
define computability or constructivity notions on infinite objects. Depending on
the context, these notions will take particulars names (computable, recursively
enumerable, r.e. open, decidable, etc...) but the definition will be always of the
form: obect x is constructive if there exists a recursive ϕ: N → D satisfying
property P(ϕ, x) (where D is some numbered set).

For example, E ⊂ N is r.e. if there exists a recursive ϕ: N → N satisfying
E = range(ϕ).

Each time, a uniform version will be implicitly defined: a sequence (xi)i is
constructive uniformly in i if there exists a recursive ϕ: N×N→ D satisfying
property P(ϕ(i, ·), xi) for all i.

In our example, a sequence (Ei)i is r.e. uniformly in i if there exists ϕ:
N× N→ N satisfying Ei = range(ϕ(i, ·)) for all i.

Let us ilustrate this in the case of reals numbers (computable reals numbers
were introduced by Turing in [11]).

Definition 2.0.1. A real number x ∈ R is said to be computable if there
exists a total recursive ϕ : N→ Q satisfying |x− ϕ(n)| < 2−n for all n ∈ N.

Hence by a sequence of reals (xi)i computable uniformly in i we mean
that there exists a recursive ϕ : N×N→ Q satisfying |x−ϕ(i, n)| < 2−n for all
n ∈ N, for all i ∈ N.

We also have the following notions:

Definition 2.0.2. Let x be a real number. We say that:
• x is lower semi-computable if the set {i ∈ N : qi < x} is r.e.,
• x is upper semi-computable if the set {i ∈ N : qi > x} is r.e.,
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It is easy to see that a real number is computable if and only if it is lower
and upper semi-computable.

2.1 Computable metric spaces

We breifly recall the basic of computable metric spaces.

Definition 2.1.1. A computable metric space (CMS) is a triple X = (X, d,S),
where
• (X, d) is a separable complete metric space.
• S = (si)i∈N is a numbered dense subset of X (called ideal points).
• The real numbers (d(si, sj))i,j are all computable, uniformly in i, j.

Some important examples of computable metric spaces:

Examples 2.1.1.

1 The Cantor space (ΣN, d, S) with Σ a finite alphabet. If x = x1x2 . . . , y =
y1y2 . . . , are elements then the distance is defined by d(x, y) =

∑
i:xi 6=yi

2−i.
Let us fix some element of Σ denoting it by 0. The dense set S is the set of
ultimately 0-stationary sequences.

2 (Rn, dRn ,Qn) with the Euclidean metric and the standard numbering of Qn.

For further examples we refer to [15].
The numbered set of ideal points (si)i induces the numbered set of ideal

balls B := {B(si, qj) : si ∈ S, qj ∈ Q>0}. We denote by B〈i,j〉 (or just Bn)
the ideal ball B(si, qj), where 〈·, ·〉 is a computable bijection between tuples and
integers.

Definition 2.1.2 (Computable points). A point x ∈ X is said to be com-
putable if the set Ex := {i ∈ N : x ∈ Bi} is r.e.

Definition 2.1.3 (R.e. open sets). We say that the set U ⊂ X is r.e. open
if there is some r.e. set E ⊂ N such that U =

⋃
i∈E Bi. If U is r.e. open and

D ⊂ X is an arbitrary set then the set A := U ∩D is called r.e. open in D.

Examples 2.1.2.

1 If the sequence (Un)n is r.e. open uniformly in n, then the union
⋃
n Un is an

r.e. open set.

2 Ui ∪ Uj and Ui ∩ Uj are r.e. open uniformly in (i, j). See [5].

Let (X,SX , dX) and (Y, SY , dY ) be computable metric spaces. Let (BYi )i be
the collection of ideal balls from Y .

Definition 2.1.4 (Computable Functions). A function T : X → Y is said to
be computable if T−1(BYi ) is r.e. open uniformly in i.
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It follows that computable functions are continuous. Since we will work
with functions which are not necessarily continuous everywhere (and hence not
computable), we shall consider functions which are computable on some subset
of X. More precisely, a function T is said to be computable on D (D ⊂ X) if
T−1(BYi ) is r.e. open in D, uniformly in i. The set D is called the domain of
computability of T .

3 Computable Probability Spaces

Let us recall some basic concepts of measure theory. Let X be a set. A family
B of subsets of X is called an algebra if (i)X ∈ B, (ii)A ∈ B ⇒ AC ∈ B
and (iii) A,B ∈ B ⇒ A ∪ B ∈ B. We say that B is a σ-algebra if moreover
Ai ∈ B, i ≥ 1 ⇒

⋃
iAi ∈ B. If B0 is a family of subsets of X, the σ-algebra

generated by B0 (denoted σ(B0)) is defined to be the smallest σ-algebra over X
that contains B0. If B is a σ-algebra of subsets of X, we say that µ : B→ [0, 1]
is a probability measure if, for every family (Ai)i ⊂ B of disjoint subsets of
X, the following holds:

µ(
⋃
i

Ai) =
∑
i

µ(Ai). (1)

If X is a topological space, the Borel σ-algebra of X is defined as the σ-
algebra generated by the family of open sets of X. Sets in the Borel σ-algebra
are called Borel sets. In this paper, a probability space will always refer to
the triple (X,B, µ), where B is the Borel σ-algebra of X and µ is a probability
measure. A set A ⊂ X has measure zero if there is a Borel set A1 such that
A ⊂ A1 and µ(A1) = 0. We call two sets A1, A2 ⊂ X equivalent modulo zero,
and write A1 = A2 (mod 0), if the symmetric difference has measure zero. We
write A1 ⊂ A2 (mod 0) if A1 is a subset of A2 and A1 = A2 (mod 0).

When X is a computable metric space, the space of probability measures
over X, denoted by M(X), can be endowed with a structure of computable
metric space. Then a computable measure can be defined as a computable
point in M(X).

Example 3.0.1 (Measure over a Cantor space). As a special example, we can
set X = BN where B = {0, 1} and λ([x]) = 2−|x|, where |x| is the length of the
binary string x ∈ {0, 1}∗. This is the distribution on the set of infinite binary
sequences obtained by tossing a fair coin, and condition (1) simplifies to

λ(x0) + λ(x1) = λ(x).

Let X = (X, d, S) be a computable metric space. Let us consider the space
M(X) of measures over X endowed with weak topology, that is:

µn → µ iff µnf → µf for all real continuous bounded f,

where µf stands for
∫
f dµ.
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If X is separable and complete, then M(X) is separable and complete. Let
D ⊂ M(X) be the set of those probability measures that are concentrated in
finitely many points of S and assign rational values to them. It can be shown
that this is a dense subset ([1]).

We consider the Prokhorov metric ρ on M(X) defined by:

ρ(µ, ν) := inf{ε ∈ R+ : µ(A) ≤ ν(Aε) + ε for every Borel set A}

where Aε = {x : d(x,A) < ε}.
This metric induces the weak topology on M(X). Furthermore, it can be

shown that the triple (M(X), D, ρ) is a computable metric space (see [3], [5]).

Definition 3.0.5. A measure µ is computable if it is a computable point of
(M(X), D, ρ)

The following result (see [5]) will be intensively used in the sequel:

Lemma 3.0.1. A probability measure µ is computable if and only if the measure
of finite union of ideal balls µ(Bi1∪. . .∪Bik) is lower semi-computable, uniformly
in i1, . . . , ik.

Definition 3.0.6. A computable probability space (CPS) is a pair (X , µ)
where X is a computable metric space and µ is a computable Borel probability
measure on X.

As already said, a computable function defined on the whole space is neces-
sarily continuous. But a transformation or an observable need not be continuous
at every point, as many interesting examples prove (piecewise-defined transfor-
mations, characteristic functions of measurable sets,. . . ), so the requirement of
being computable everywhere is too strong. In a measure-theoretical setting,
the natural weaker condition is to require the function to be computable almost
everywhere. In the computable setting this is not enough, and a computable
condition on the set on which the function is computable is needed:

Definition 3.0.7 (Constructive Gδ-sets). We say that the set D ⊂ X is a
constructive Gδ-set if it is the intersection of a sequence of uniformly r.e. open
sets.

Definition 3.0.8 (µ-computable functions). Let (X , µ) and Y be a CPS and
a CMS respectively. A function f : (X , µ) → Y is µ-computable if it is
computable on a constructive Gδ-set (denoted as domf or Df ) of measure one.

Example 3.0.2. Let m be the Lebesgue measure on [0, 1]. The binary ex-
pansion of reals defines a function from non-dyadic numbers to infinite binary
sequences which induces a m-computable function from ([0, 1],m) to {0, 1}N.

Remark 3.0.1. Given a uniform sequence of µ-computable functions (fi)i,
any computable operation �ni=0fi (adition, multiplication, composition, etc...)
is µ-computable, uniformly in n.

6



We recall that F : (X , µ) → (Y, ν) is measure-preserving if µ(F−1(A)) =
ν(A) for all Borel sets A.

Definition 3.0.9 (morphisms of CPS’s). A morphism of CPS’s F : (X , µ)→
(Y, ν), is a µ-computable measure-preserving function F : DF ⊆ X → Y .

An isomorphism of CPS’s (F,G) : (X , µ) � (Y, ν) is a pair (F,G) of
morphisms such that G ◦ F = id on F−1(DG) and F ◦G = id on G−1(DF ).

Example 3.0.3. Let (BN, λ) the probability space introduced in Example 3.0.1
with the coin-tossing distribution λ over the infinite sequences. The binary
expansion (see example 3.0.2) creates an isomorphism of CPS’s between the
spaces ([0, 1],m) and (BN, λ).

Remark 3.0.2. To every isomorphism of CPS’s (F,G) one can associate the
canonical invertible morphism of CPS’s ϕ = F |Dϕ

with ϕ−1 = G|Dϕ−1 , where
Dϕ = F−1(G−1(DF )) and Dϕ−1 = G−1(DF ). Of course, (ϕ,ϕ−1) is an isomor-
phism of CPS’s as well.

The next proposition is a direct consequence of theorem 5.1.1 from [5]:

Proposition 3.0.1. Every computable probability space is isomorphic to the
Cantor space with an appropiate computable measure.

Definition 3.0.10. A set A ⊂ X is said to be almost decidable if the function
1A : X → {0, 1} is µ-computable.

It is easy to see that a set A is almost decidable iff there is a constructive
Gδ set D of measure one and two r.e. open sets U and V such that:

U ∩D ⊂ A, V ∩D ⊆ AC , µ(U) + µ(V ) = 1.

Remarks 3.0.1.

1 The collection of almost decidable sets is an algebra.

2 An almost decidable set is always a continuity set.

3 Ideal balls with zero boundary measure are always almost decidable.

4 Unless the space is disconnected (i.e. has non-trivial clopen subsets), no set can
be decidable, i.e. semi-decidable (r.e.) and with a semi-decidable complement
(such a set must be clopen1). Instead, a set can be decidable with probability
1: there is an algorithm which decides if a point belongs to the set or not, for
almost every point. This is why we call it almost decidable.

Ignoring computability, the existence of open sets with zero boundary mea-
sure directly follows from the fact that the collection of open sets is uncountable
and µ is finite. The problem in the computable setting is that there are only
countable many open r.e. sets. Fortunately, there still always exists a basis of
almost decidables balls.

1In the Cantor space for example (which is totally disconnected), every cylinder (ball) is a
decidable set. Indeed, to decide if some infinite sequence belongs to some cylinder it suffices to
compare the finite word defining the cylinder to the corresponding finite prefix of the infinite
sequence.
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Lemma 3.0.2. Let X be R or R+ or [0, 1]. Let µ be a computable probability
measure on X. Then there is a sequence of uniformly computable reals (xn)n
which is dense in X and such that µ({xn}) = 0 for all n.

Proof. Let I be a closed rational interval. We construct x ∈ I such that
µ({x}) = 0. To do this, we construct inductively a nested sequence of closed
intervals Jk of measure < 2−k+1, with J0 = I. Suppose Jk = [a, b] has been
constructed, with µ(Jk) < 2−k+1. Let m = (b − a)/3: one of the intervals
[a, a + m] and [b −m, b] must have measure < 2−k, and since their measure is
upper-computable, we can find it effectively—let it be Jk+1.

From a constructive enumeration (In)n of all the dyadic intervals, we can
construct xn ∈ In uniformly.

Corollary 3.0.1. Let (X , µ) be a CPS and (fi)i be a sequence of uniformly
computable real valued functions on X. Then there is a sequence of uniformly
computable reals (xn)n which is dense in R and such that µ({f−1

i (xn)}) = 0 for
all i, n.

Proof. Consider the uniformly computable measures µi = µ ◦ f−1
i and define

ν =
∑
i 2−iµi. By Lemma 3.0.1, ν is a computable measure and then, by

Lemma 3.0.2, there is a sequence of uniformly computable reals (xn)n which is
dense in R and such that ν({xn}) = 0 for all n. Since ν(A) = 0 iff µi(A) = 0
for all i, we get µ({f−1

i (xn)}) = 0 for all i, n.

The following result will be used many times in the sequel.

Corollary 3.0.2. There is a sequence of uniformly computable reals (rn)n∈N
such that (B(si, rn))i,n is a basis of almost decidable balls.

Proof. Apply Corollary 3.0.1 to (fi)i defined by fi(x) = d(si, x).

We remark that every ideal ball can be expressed as a r.e. union of almost
decidable balls, and vice-versa. So the two bases are constructively equivalent.

Definition 3.0.11. A computable probability space is a computable Lebesgue
space if it is isomorphic to the computable probability space ([0, 1],m) where
m is the Lebesgue measure.

Theorem 3.0.1. Every computable probability space with no atoms is a com-
putable Lebesgue space.

Proof. We first prove the result for I = ([0, 1], µ).

Lemma 3.0.3. The interval endowed with a non-atomic computable probability
measure is a computable Lebesgue space.

Proof. We define the morphism of the CPS as F (x) = µ([0, x]). As µ has no
atom and is computable, F is computable and surjective. As F is surjective, it
has right inverses. Two of them are G<(y) = sup{x : F (x) < y} and G>(y) =
inf{x : F (x) > y}, and satisfy F−1({y}) = [G<(y), G>(y)]. They are increasing
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and respectively left- and right-continuous. As F is computable, they are even
lower- and upper semi-computable respectively. Let us define D = {y : G<(y) =
G>(y)}: every y ∈ D has a unique pre-image by F , which is then injective on
F−1(D). The restriction of F on F−1(D) has a left-inverse, which is given
by the restriction of G< and G> on D. Let us call it G : D → I. By lower
and upper semi-computability of G< and G>, G is computable. Now, D is a
constructive Gδ-set: D =

⋂
n{y : G>(y)−G<(y) < 1/n}. We show that I \D

is a countable set. The family {[G<(y), G>(y)] : y ∈ I} indexed by I is a family
of disjoint closed intervals, included in [0, 1]. Hence, only countably many of
them have positive length. Those intervals correspond to points y belonging to
I \D, which is then countable. It follows that D has Lebesgue measure one (it
is even dense). (F,G) is then an isomorphism between (I, µ) and (I,m).

Now, we know from Theorem 3.0.1 that every CPS (X , µ) has a binary
representation, which is in particular an isomorphism with the Cantor space
(BN, µ′). As mentioned in Example 3.0.3, the latter is isomorphic to (I, µI)
where µI is the induced measure. If µ is non-atomic, so is µI . By the previous
lemma, (I, µI) is isomorphic to (I,m).

3.1 Randomness and typicality

3.1.1 Algorithmic randomness

Definition 3.1.1. A Martin-Löf test (ML-test) is an uniform sequence
(An)n of r.e. open sets such that µ(An) ≤ 2−n. We say that x fails the ML-test
if x ∈ An for all n. A point x is called ML-random if it fails no ML-test.

Definition 3.1.2. A Borel-cantelli test (BC-test) is a uniform sequence
(Cn)n of r.e. open sets such that

∑
n µ(Cn) < ∞. We say that x fails the

BC-test if x ∈ Cn infinitly often (i.o.).

It is easy to show that:

Proposition 3.1.1. x fails a ML-test iff x fails a BC-test.

Definition 3.1.3. A Schnorr test (Sch-test) is a ML-test (An)n such that
the sequence of reals (µ(An))n is uniformly computable. We say that x fails
the Sch-test if x ∈ An for all n. A point x is called Sch-random if it fails no
Sch-test.

Definition 3.1.4. A strong BC-test is a BC-test (Cn)n such that
∑
n µ(Cn)

is computable.

Proposition 3.1.2. An element x fails a Sch-test if and only if x fails a strong
BC-test.

Proof. Let (Cn)n be a strong BC-test. Let c be such that 2c >
∑
n µ(Cn).

Define the r.e. open set Ak := {x : |{n : x ∈ Cn}| ≥ 2k+c}. Then µ(Ak) < 2−k.
Observe that Ak is the union of all the (2k+c)-intersections of Cn’s. Since
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µ(Ck) =
∑
n µ(Cn) −

∑
n 6=k µ(Cn) and the Cn’s are r.e. we have that µ(Cn)

is computable (uniformly in n). We choose a basis (Bi)i of almost decidable
balls to work with. Recall that finite unions or intersections of almost decidable
sets are almost decidable too and that the measure of an almost decidable set
is computable. Now we show that µ(Ak) is computable uniformly in k. Let
ε > 0 be rational. Let n0 be such that

∑
n≥n0

µ(Cn) < ε
2 . Then µ(

⋃
n≥n0

Cn) <
ε
2 . For each Cn with n < n0 we construct an almost decidable set Cεn ⊂ Cn
(a finite union of almost decidable balls) such that µ(Cn) − µ(Cεn) < 1

n0

ε
2 .

Then
∑
n<n0

[µ(Cn) − µ(Cεn] < ε
2 . Define Aεk to be the union of the (2k+c)-

intersections of the Cεn’s for n < n0. Then Aεk is almost decidable and then has
a computable measure. Moreover Ak ⊂ Aεk ∪ (

⋃
n≥n0

Cn) ∪ (
⋃
n<n0

Cn \ Cεn),
hence µ(Ak)− µ(Aεk) < ε.

The following result is an easy modification of a result from [5], so we omit
the proof.

Proposition 3.1.3. Morphisms of computable probability spaces are defined
(and computable) on Schnorr random points and preserve Sch-randomness.

3.2 Dynamical systems and typicality

Let X be a metric space, let T : X 7→ X be a Borel map. Let µ be an invariant
Borel measure on X, that is: µ(A) = µ(T−1(A)) holds for each measurable
set A. A set A is called T -invariant if T−1(A) = A modulo a set of measure
0. The system (T, µ) is said to be ergodic if each T -invariant set has total or
null measure. In such systems the famous Birkhoff ergodic theorem says that
time averages computed along µ-typical orbits coincide with space averages with
respect to µ. More precisely, for any f ∈ L1(X) it holds

lim
n→∞

Sfn(x)
n

=
∫
f dµ, (2)

for µ-almost each x, where Sfn = f + f ◦ T + . . .+ f ◦ Tn−1.
If a point x satisfies equation (2) for a certain f , then we say that x is typical

with respect to the observable f .

Definition 3.2.1. If x is typical w.r. to every bounded continuous function
f : X → R, then we call it a T -typical point.

Remark 3.2.1. The proof of our main theorem will show as a side result that
the definition would not change if we replaced “continuous” with “computable”
in it.

In [14] is proved that ML-random infinite binary sequences are typical w.r. to
any computable f . In [4], this is generalized via effective symbolic dynamics to
computable probability spaces and µ-computable observables.

To have the result for Sch-random points it seems that a certain “mixing”
property or “loss of memory” of the system has to be required. This is naturally
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expressed by means of the correlation functions. For measureable functions
f, g let

C(f, g) = µ(f · g)− µf · µg,
Cn(f, g) = C(f ◦ Tn, g).

For events A,B with indicator functions 1A, 1B let

Cn(A,B) = Cn(1A, 1B),

which measures the dependence between the events A and B at times n � 1
and 0 respectively. Note that Cn(A,B) = 0 corresponds, in probabilistic terms,
to T−n(A) and B being independent events.

Let us say that a family of Borel sets E is essential, if for every open set
U there is a sequence (Ei)i of borel sets in E such that ∪iEi ⊂ U (mod 0) (see
Section 3).

Definition 3.2.2. We say that a system (X,T, µ) is (polynomially) mixing
if there is α > 0 and an essential family E = {E1, E2, ...} of almost decidable
events such that for each i, j there is ci,j > 0 computable in i, j such that

|Cn(Ei, Ej)| ≤
ci,j
nα

for all n ≥ 1.

We say that the system is independent if all correlation functions Cn(Ei, Ej)
are 0 for sufficiently large n.

Examples of non-mixing but still ergodic systems are given for instance by
irrational circle rotations with the Lebesgue measure. Examples of mixing but
not independent sytems are given by piecewise expandings maps or uniformly
hyperbolic systems which have a distinguished ergodic measure (called SRB
measure and which is “physical” in some sense) with respect to which the corre-
lations decay exponentially (see [12]). An example of a mixing system for which
the decrease of correlations is only polynomial and not exponential, is given by
the class of Manneville-Pomeau type maps (non uniformly expanding with an
indifferent fixed point, see [6]). For a survey see [16].

3.3 Proof of the main result

Now we prove our main theorem.

Theorem 3.3.1. Let (X , µ) be a computable probability space with no atoms
The following properties of a point x ∈ X are equivalent.

(i) x is Schnorr random.

(ii) x is T -typical for every mixing endomorphism T .

(iii) x is T -typical for every independent endomorphism T .
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Remark 3.3.1. If the measure µ is atomic, it is easy to see that:

1. (X , µ) admits a mixing endomorphism if and only if µ = δx for some x.
In this case the theorem still holds, the only random point being x.

2. (X , µ) admits an ergodic endomorphism if and only if µ = 1
n (δx1 +...+δxn

)
(where xi 6= xj , for all i 6= j). In this case, a point x is Schnorr random if
and only if it is typical for every ergodic endomorphism if and only if it is
an atom.

Proof. Let us first prove a useful lemma. Let E ⊂ X be a Borel set. Denote by
1E its indicator function. The ergodic theorem says that the following equality
holds for almost every point:

lim
n

1
n

n−1∑
i=0

1E ◦ T i(x) = µ(E). (3)

Lemma 3.3.1. Let E be an essential family of events. If x satisfies equation (3)
for all E ∈ E then x is a T -typical point.

Proof. We have to show that equation (3) holds for any bounded continuous
observable f . First, we extend equation (3) to every continuity open set C. Let
(Ei)i be a sequence of elements of E such that

⋃
iEi ⊆ Int(C) and µ(

⋃
iEi) =

µ(C). Define Ck =
⋃
i≤k Ei. Then µ(Ck)↗ µ(C). For all k:

lim inf
n

1
n

n−1∑
i=0

1C ◦ T i(x) ≥ lim
n

1
n

n−1∑
i=0

1Ck
◦ T i(x) = µ(Ck)

so lim infn 1
n

∑n−1
i=0 1C ◦ T i(x) ≥ µ(C). Applying the same argument to X \ C

gives the result.
Now we extend the result to bounded continuous functions. Let f be con-

tinuous and bounded (|f | < M) and let ε > 0 be a real number. Then, since
the measure µ is finite, there exist real numbers r1, . . . , rk ∈ [−M,M ] (with
r1 = −M and rk = M) such that |ri+1 − ri| < ε for all i = 1, . . . , k − 1 and
µ(f−1({ri})) = 0 for all i = 1, . . . , k. It follows that for i = 1, . . . , k− 1 the sets
Ci = f−1(]ri, ri+1[) are all continuity open sets.

Hence the function fε =
∑k−1
i=1 ri1Ci

satisfies ‖f − fε‖∞ ≤ ε and then the
result follows by density.

We are now able to prove that (i) ⇒ (ii).
Let E ∈ E . Put f = 1E . Observe that f is µ-computable. For δ > 0, define

the deviation sets:

Afn(δ) =
{
x ∈ X :

∣∣∣∣Sfn(x)
n
−
∫
f dµ

∣∣∣∣ > δ

}
.

By Corollary 3.0.1 we can choose δ such that Afn(δ) is almost decidable. Then
their measures are computable, uniformly in n.

12



By the Chebychev inequality, µ(Afn(δ)) ≤ 1
δ2

∥∥∥Sf
n(x)
n −

∫
f dµ

∥∥∥2

L2
. Let us

change f by adding a constant to have
∫
f dµ = 0. This does not change the

above quantity. Then, by invariance of µ we have∥∥∥∥Sfn(x)
n
−
∫
f dµ

∥∥∥∥2

L2

=
∫ (

Sfn(x)
n

)2

dµ =
1
n2

∫
nf2 dµ+

2
n2

∫ ( ∑
i<j<n

f ◦ T j−if
)

dµ

and hence

δ2µ(Afn(δ)) ≤
‖f‖2L2

n
+

2
n

∑
k<n

|Ck(f, f)| ≤
‖f‖2L2

n
+

2cf,f
(1− α)nα

.

(Observe that α can be replaced by any smaller positive number, so we assume
α < 1.) Hence, µ(Afn(δ)) ≤ Cn−α for some constant C. Now, it is easy to find a
sequence (ni)i∈N such that the subsequence (n−αi )i is effectively summable and
ni

ni+1
→ 1 (take for instance ni = iβ with αβ > 1). This shows that the sequence

Afni
(δ) is a strong BC-test. Therefore, if x is Sch-random then x belongs to only

finitely many Afni
(δ) for any δ and hence the subsequence

Sf
ni

(x)

ni
converges to∫

f dµ = µ(E). To show that for such points the whole sequence Sf
n(x)
n converges

to
∫
f dµ = µ(E), observe that if ni ≤ n < ni+1 and βi := ni

ni+1
then we have:

Sfni

ni
− 2(1− βi)M ≤

Sfn
n
≤
Sfni+1

ni+1
+ 2(1− βi)M,

where M is a bound of f . To see this, for any k, l, β with β ≤ k/l ≤ 1:

Sfk
k
−
Sfl
l

=
(

1− k

l

)
Sfk
k
−
Sfl−k ◦ T l−k

l
≤ (1− β)M +

(l − k)M
l

= 2(1− β)M.

Taking β = βi and k = ni, l = n first and then k = n, l = ni+1 gives the result.
Thus, we have proved that a Schnorr random point x satisfies equation (3) for
any E ∈ E . Lemma 3.3.1 allows to conclude.

The (ii) ⇒ (iii) part follows since any independent dynamic is in particular
mixing.

To prove the (iii) ⇒ (i) part we will need the following proposition which is
a strengthening of a result of Schnorr in [9].

Proposition 3.3.1. If the infinite binary string ω ∈ (BN, λ) is not Schnorr
random (w.r. to the uniform measure), then there exists an isomorphism Φ :
(BN, λ)→ (BN, λ) such that Φ(ω) is not typical for the shift transformation σ.

To prove it, we need some preparation. In the case of Cantor spaces, com-
putable maps have a more explicit expression.

Definition 3.3.1 (Lower semicomputable string functions). Let v denote the
prefix relation between two strings x, y in some alphabet.

13



Let Σ1,Σ2 be two alphabets. A function ϕ : Σ∗1 → Σ∗2 monotonic with
respect to the prefix relation is called lower semicomputable if the set {〈x, y〉 :
ϕ(x) w y} is recursively enumerable. Each such function ϕ defines a partial
mapping ϕ : ΣN

1 → (Σ∗2 ∪ ΣN
2 ) via

ϕ(x) = sup
x′vx

ϕ(x′).

The following statement is straighforward to prove.

Proposition 3.3.2. Let Σ1,Σ2 be two alphabets and C1, C2 the corresponding
Cantor spaces.

(a) For lower semicomputable monotonic function ϕ : Σ∗1 → Σ∗2 the map ϕ is
computable on the set dom(ϕ) of sequences x ∈ Σ1 on which ϕ(x) ∈ ΣN

2 .

(b) For every computable function f : D → C2 defined on some set D ⊆ C1,
there is a lower semicomputable monotonic function ϕ such that dom(ϕ) ⊇
D and f(x) = ϕ(x). Here, the function ϕ can also be chosen to be com-
putable.

Isomorphisms of CPS’s between Cantor spaces have a special form: let us
elaborate on this somewhat.

Definition 3.3.2. For an alphabet Σ, a set of strings S ⊆ ΣN is called a
covering set if SΣN = ΣN. Let us call two strings x, y incompatible if neither
is the prefix of the other, or equivalently, if xΣN and yΣN are disjoint.

Kraft’s inequality says that for a finite incompatible set of strings A ⊆ BN

we have
∑
x∈A 2−|x| ≤ 1, with equality if and only if A is covering.

Definition 3.3.3. Let ϕ : Σ∗1 → Σ∗2 be a monotonic function with respect to
the prefix relation and ψ : ΣN

1 → ΣN
2 a function. We say ϕ v ψ if for each

x ∈ Σ∗1, y ∈ ΣN
1 with x v y we have ϕ(x) v ψ(y). In this case we also say ψ is

an extension of ϕ.

Definition 3.3.4 (Measure-preservation). For a set S ⊆ B∗ of strings let us
define λ(S) = λ(SBN). Let ϕ : B∗ → B∗ be a monotonic map. We say that ϕ
is measure preserving if for each S ⊆ B∗ we have λ(ϕ−1(S)) ≤ λ(S). It is
sufficient to require this for one-element sets S.

The following statement is not hard to prove.

Proposition 3.3.3. Consider the Cantor space of infinite binary sequences.

(a) A measure-preserving map from B∗ to itself can be extended to a measure-
preserving map from BN to itself.

(b) Every computable measure-preserving map from BN to itself is the extension
ϕ of some computable measure-preserving map ϕ from B∗ to itself.

We now recall an equivalent definition of Schnorr-randomness.
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Definition 3.3.5 (Martingale). Let (ΣN, µ) be a Cantor space with a probabil-
ity distribution µ over it, as in Example 3.0.1. A martingale for µ is a function
V : Σ∗ → R+ with the property∑

z∈Σ

µ(xz)V (xz) = µ(x)V (x).

It is a supermartingale if we have ≤ here.

The following inequality is well-known and easy to prove.

Proposition 3.3.4 (Martingale inequality). For any α > 0 and any super-
martingale V we have

{ω : ∃nV (ω[n]) ≥ αV (Λ)} ≤ α. (4)

From now on we restrict our attention to the Cantor space BN of with the
uniform measure λ. Then a martingale for λ is a function V : B∗ → R+ with
the property

1
2

(V (x0) + V (x1)) = V (x).

Definition 3.3.6. For a string x = x1x2 · · · ∈ Σ∗ ∪ ΣN denote

x[n] = x1 . . . xn.

Let V be a computable supermartingale, and f : N → N an unbounded mono-
tonic computable function. Define the set NV,f as the set of all sequences x
with lim supn V (x[n])/f(n) > 0.

It is easy to see that each set of the form NV,f has measure 0. Moreover,
the following theorem is proved in [9].

Proposition 3.3.5. A set has the form NV,f for a martingale V if and only if
there is a Schnorr test T such that the infinite strings failing T are exactly the
elements of NV,f .

Let NV,f be given, and let f ′ = b
√
fc. Then x ∈ NV,f implies V (x[n]) >

f ′(n) for infinitely many n. Because of this, we will give yet another definition
of (Schnorr-) constructive null set.

Let V be a computable martingale for λ and f : N → N an unbounded
monotonic computable function with f > 4. We define the set N′V,f as the set
of all sequences x with V (x[n]) > f(n) infinitely often.

It is obvious that the sets N′V,f are also just the null sets found by Schnorr
tests.

Theorem 12.1 of Schnorr’s book [9] says that for each such set there is a
measure preserving computable function Φ : BN → BN such that for all z ∈ NV,f

the value Φ(z) do not satisfy the law of large numbers (hence, it is non-typical
for the shift). Using Proposition 3.3.2 we can always represent any such Φ as
the supremum Φ = ϕ where ϕ : B∗ → B∗ is a monotonic computable function.
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Proof of proposition 3.3.1. In what follows we modify Schnorr’s construction in
such a way that ϕ has a computable inverse ϕ−1. In this case ϕ becomes an
isomorphism between computable measureable spaces.

To prepare the construction of ϕ, we need some more definitions. First, we
define a series of tests using V, f , having more and more special properties.

Given our unbounded computable function f : N → R+, there is an un-
bounded strictly increasing recursive function g : N→ N such that for all n we
have

f(g(n)) > 22n logn. (5)

Let

Un = {x ∈ Bg(n) : max
i≤g(n)

V (x[i]) > 2n},

U ′n =
n logn⋂
j=n

UjBN,

then of course we have

U ′n ⊇ {y ∈ BN : max
i≤g(n)

V (y[i]) > 2n logn}. (6)

By the martingale inequality 4 we have

λ(UnBN) ≤ 2−n. (7)

Claim 3.3.1. If y ∈ N′V,f , then there are infinitely many n with y ∈ U ′n.

Proof. We have V (y[i]) > f(i) for infinitely many i. For such an i let n be such
that g(n−1) < i ≤ g(n), then noting 2(n−1) log(n−1) ≥ 2(n−1)(log n−1) ≥
n log n we have

V (y[i]) > f(i) > f(g(n− 1)) > 22(n−1) log(n−1) by (5)

> 2n logn

if n is sufficiently large (independently of y). From here we conclude by the
inequality (6).

In what follows we break up the sets U ′n into parts W ′i belonging to different
prefixes.

For each n let us define the following sets of integers:

Ln = {i : n ≤ 3i < 3i+1 ≤ n log n}.

Claim 3.3.2. There is a computable function s : N → B∗ with the following
properties.

(a) The integers |si| ≤ i form a monotonically increasing sequence with limi|si| =
∞.
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(b) For each n the set of strings {si : i ∈ Ln} is a covering set.

The proof is easy. Now we modify our test sets further. Assume that a
function s : N→ B∗ is given satisfying the requirement in the claim. For every
positive integer m let i = blog3mc, and

Wm = siB∗ ∩ Um = {x ∈ Um : x w si},

W ′i =
3i+1−1⋂
m=3i

WmBN = siBN ∩
3i+1−1⋂
m=3i

UmBN.

Claim 3.3.3. We have U ′n =
⋃
i∈Ln

W ′i . Therefore ω ∈ NV,f implies that there
are infinitely many i with ω ∈W ′i .

Proof. Since {si : i ∈ Ln} is covering, for each y ∈ U ′n there is a i ∈ Ln with
y ∈ siBN ∩ U ′n. On the other hand i ∈ Ln implies n ≤ 3i < 3i+1 − 1 < n log n,
hence by its definition U ′n ⊆

⋂3i+1−1
m=3i UmBN.

We define a measure-preserving invertible map ϕ via a monotonic measure-
preserving computable function ϕ : B∗ → B∗ with ϕ(Bg(n)) = Bn. Suppose
that ϕ has been defined up to Bg(n), we define it for Bg(n+1). Let y ∈ Bn,
D = ϕ−1(y). Let W = DBN ∩Wn+1BN, then (7) implies λ(W ) ≤ 2−n−1. If
W 6= ∅ then let ϕ(W ) = y1.

Let i = blog3(n+ 1)c, then as we know, all elements of W share the pre-
fix si. If all elements of D also share the prefix si then extend ϕ further on
DBg(n+1)−g(n) to y0 or y1 in an arbitrary measure-preserving way. Otherwise
let r be the first index ≤ |si| such that there are strings x′, x′′ ∈ D with x′r 6= x′′r .
For j ∈ {0, 1} let

Dj = {x ∈ D : xr = j}.

By definition one of these sets contains W , without loss of generality assume
W ⊆ D1. For j ∈ {0, 1} we will define the sets D′j = ϕ−1(yj). Of course we
need λ(D′j) = 2−n−1, and we have already set D′1 ⊇W . Now, if λ(D1) ≥ 2−n−1

then let D′1 ⊆ D1, otherwise let D′0 ⊆ D0. The further details of the choice of
D′j are arbitrary.

This completes the definition of ϕ. The measure preserving property is
immediate from the definition. Let us observe another important property. The
numbers λ(Dj)/λ(D) have the form p/2q for some integers p, q with odd p < 2q

and 1 ≤ q ≤ g(n). Denote q(y) = q. The definition of the extension gives

q(yj) = q(y)− 1. (8)

Now we show that the image of a nonrandom string is not typical.

Claim 3.3.4. If ω ∈ NV,f then ϕ(ω) is not typical.
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Proof. Suppose ω ∈ NV,f , and let η = ϕ(ω), then there are infinitely many
indices i with ω ∈W ′i . Let i be such, this implies ω ∈WmBN for 3i ≤ m < 3i+1.
The construction gives ηm = 1 for 3i ≤ m < 3i+1. Since this is true for infinitely
many i, the sequence η is not typical.

To show that ϕ is invertible, we will find for each k a value n = n(k) such
that x′k 6= x′′k implies ϕ(x′[g(n)]) 6= ϕ(x′′[g(n)]). We define n(k) recursively via

n(0) = 1,
n(k + 1) = n(k) + g(n(k)).

Claim 3.3.5. Let x′, x′′ ∈ BN be two different sequences. For all k ≥ 1 with
n = n(k), the relation x′k 6= x′′k implies ϕ(x′[g(n)]) 6= ϕ(x′′[g(n)]).

Proof. Let y = ϕ(x′), and let k ≥ 1 be the first place where x′k 6= x′′k . For
m = n(k − 1) consider the map ϕ on Bg(m). If y[m] = ϕ(x′[g(m)]) 6= ϕ(x′′[g(m)])
then we are done, suppose this is not the case. Let D = ϕ−1(y[m]). By the choice
of m, all elements of D share the prefix x′[k−1]. The definition above extends ϕ to
Bg(m+1). If y[m+1] = ϕ(x′[g(m+1)]) 6= ϕ(x′′[g(m+1)]) then we are done. Otherwise
relation (8) implies q(y[m+1]) < q(y[m]). Therefore by repeating the extension
we must get ϕ(x′[g(i)]) 6= ϕ(x′′[g(i)]) for some i < m + g(m) before getting to
q(y[i]) = 0.

This completes the proof of Proposition 3.3.1.

Now we are able to finish the proof of our main result: suppose that x is not
Schnorr random. We construct a dynamic T for which x is not T -typical. From
Proposition 3.0.1 and Theorem 3.0.1 we know that there is an isomorphism
η : (X , µ) → (BN, λ) (here, λ denotes the uniform measure). If x /∈ dom(η),
we can take any independent endomorphism and modify it in order to be the
identity on x. It is cleary still an independent endomorphism (maybe with a
smaller domain of computability) and x, being a fixed point, can’t be T -typical.
So let x ∈ dom(η). Then η(x) is not Schnorr random in (BN, λ), since η as well as
its inverse preserve Schnorr randomness. Then, by Proposition 3.3.1, Φ(η(x))
is not σ-typical, where σ is the shift which is clearly independent (cylinders
being the essential events). Put ψ = Φ ◦ η. Define the dynamics T on X by
T = ψ−1 ◦ σ ◦ ψ. It is easy to see that T is independent for events of the
form E = ψ−1[w]. Since {ψ−1[w] : w ∈ 2∗} form an essential family of almost
decidable events, T is independent too. As ψ(x) is not σ-typical, x is not T -
typical either.
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