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Abstract. We pursue the study of the framework of layerwise com-
putability introduced in [?] and give three applications. (i) We prove a
general version of Birkhoff’s ergodic theorem for random points, where
the transformation and the observable are supposed to be effectively mea-
surable instead of computable. This result significantly improves [?,?]. (ii)
We provide a general framework for deriving sharper theorems for ran-
dom points, sensitive to the speed of convergence. This offers a systematic
approach to obtain results in the spirit of Davie [?]. (iii) Proving an ef-
fective version of Prokhorov theorem, we positively answer a question
raised in [?]: can random Brownian paths reach any random number?
All this shows that layerwise computability is a powerful framework to
study Martin-Löf randomness, with a wide range of applications.

1 Introduction

Algorithmic randomness emerged as an early achievement of Kolmogorov’s
program to base probability theory on the theory of computing. Yet, a
framework allowing the combination of these two theories is still lacking:
for instance, computable analysis is mainly concerned with effective ver-
sions of topological notions, and not probabilistic/mesure-theoretic ones.
For this reason, the study of algorithmic randomness has not reached its
expected range of application: general probability theory. Let us recall
the main contributions of algorithmic randomness to probability theory
developed so far.

Theorems for random points. The main novelty brought by algorithmic
randomness is that probabilistic laws can be strengthened in principle,
holding at every random point and not only with probability one. Classi-
cal examples can be found in [?,?,?] for instance. The key hypothesis when
proving this kind of result is the requirement that the random variables
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involved be computable. However, it is well-known that computability no-
tions are the effective versions of topological ones (the computable func-
tions are precisely the effectively continuous ones, the semi-decidable sets
are precisely the effectively open sets, and so on). Hence the computabil-
ity assumption on random variables is (i) inappropriate in principle, as
probability theory is grounded on measure theory and not on topology;
(ii) a priori too strong, as in the classical setting only properties as mea-
surability, integrability are required. This leads to the following:

Problem 1. Theorems for random points should hold for “effectively
measurable” objects and not only computable ones.

This problem has already been independently investigated in [?, ?]
where ergodic theorems for random points are proved different types of
“almost everywhere computable” functions. These works are, however,
still far from catching the effective version of measurable functions. For
instance in Birkhoff’s ergodic theorem, nothing can be said about the
mean sojourn time of algorithmically random points in fractal sets having
effective constructions, as the Smith-Volterra-Cantor (or fat Cantor) set3.

Information given by the randomness degree. A further contribution of al-
gorithmic randomness to probability theory consists in making use of the
“randomness degree” of a random point x to get additional information
about the way x satisfies a given probabilistic law. For instance in [?], the
speed of convergence in the Strong Law of Large Numbers is computed
from the “compressibility coefficient” of each random sequence. This kind
of result gives a much sharper insight into probabilistic phenomena and,
we believe, new tools are needed in order to make this approach system-
atic and applicable on abstract spaces:

Problem 2. Having a general framework to get sharper theorems for
random points, using the information given by the randomness degree.

Layerwise computability. In [?], working in the context of computable
probability spaces (to which Martin-Löf randomness has been recently
extended, see [?,?]), effective versions of measure-theoretic notions were
examined and another contribution of algorithmic randomness to prob-
ability theory was developed: the setting of a new framework for com-
putability adapted to the probabilistic context. This was achieved by
3 The Smith-Volterra-Cantor set A ⊆ [0, 1] is homeomorphic to the Cantor set and

has Lebesgue measure 1
2
.
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making a fundamental use of the existence of a universal Martin-Löf test
to endow the space with what we call the Martin-Löf layering. In this new
framework, which we call layerwise computability, the layerwise ver-
sions of virtually all computability notions can be naturally defined. The
contributions of this setting can be summarized in the following principle,
supported by the main results in [?]:

Correspondence Principle (CP). Under effectivity assumptions, measure-
theoretic notions correspond exactly to layerwise versions of topological
ones.

Intuitively, this gives evidence that the layering structure grasps a
large part of the probabilistic phenomena: each probabilistic notion, that
by nature intimately depends on the underlying measure µ, can be ex-
pressed without referring to µ but only to its imprint on the space, cap-
tured by the layering. In this paper, elaborating on [?] and developing
layerwise computability further, we give solutions to Problems 1 and 2.
The CP is at the core of these solutions, that we briefly present now.

Solution to Problem 1. We prove general versions of theorems for ran-
dom points and effectively measurable random variables, in particular
Birkhoff’s ergodic theorem. This is a significant improvement of [?, ?] as
it implies in particular a positive result for the Smith-Volterra-Cantor
set. To prove these results we develop tools allowing to adapt the exis-
tent proof techniques (used in the computable context) to the layerwise
computable context. Then, the results for effectively measurable objects
follows from the CP. This strategy is very general and applicable in a
wide range of situations.

Solution to Problem 2. As a further illustration of the CP we prove
that under effectivity assumptions, almost everywhere convergence cor-
responds to the layerwise version of uniform convergence. This result
gives evidence that the layering encodes information from which sharper
results can be stated, providing a systematic approach to results in the
spirit of [?]. In particular, we use it to compute the speed of convergence
of random points (in a given layering) in both the Strong Law of Large
Number and the Ergodic Theorem, in their general versions. The explicit
connection between our framework and the results in [?] is also given.

As a preliminary step, we use Martin-Löf randomness and an iso-
morphism theorem to derive an effective version of Prokhorov’s theorem
about tightness of probability measures. This gives yet another tool to
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solve problems related to algorithmic randomness, as it enables us to give
a positive answer to a question raised in [?] for algorithmically random
Brownian motion (see Sect. 5.3).

In Sect. 2 we recall the background on computable probability spaces
and Martin-Löf randomness and prove the effective version of a Prokhorov’s
result. In Sect. 3 we set the framework for layerwise computability and
state the results relating it to effective measurability. In Sect. 4 we study
the convergence of random variables from the effective point of view. We
finish in Section 5 by applying all this machinery to obtain the general
results announced above, giving solutions to Problems 1 and 2.

2 Preliminaries

2.1 Computable probability spaces

We work on the well-studied computable metric spaces (see [?]).

Definition 1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,
2. S = {si : i ∈ IN} is a countable dense subset of X with a fixed

numbering,
3. d(si, sj) are uniformly computable real numbers.

S is called the set of ideal points. If x ∈ X and r > 0, the metric
ball B(x, r) is defined as {y ∈ X : d(x, y) < r}. The set B := {B(s, q) :
s ∈ S, q ∈ Q, q > 0} of ideal balls has a canonical numbering B = {Bi :
i ∈ IN}. An effectively open set is an open set U such that there is
a r.e. set E ⊆ IN with U =

⋃
i∈E Bi. A compact set K is effectively

compact if the set {〈i1, . . . , in〉 : K ⊆ Bi1 ∪ . . . ∪ Bin} ⊆ IN is r.e. Let
K ⊂ X. A set V is effectively open in K if there is an effective open
set U such that V ∩K = U ∩K. A set V is decidable in K if V and
X \ V are effectively open in K. A function f : X → Y is computable
on K if the preimages of effectively open sets are effectively open in K,
in a uniform way. A real function f : X → [−∞,+∞] is lower semi-
computable if the sets f−1(qi,+∞) are uniformly effectively open, it is
upper semi-computable if −f is lower semi-computable. Any object
that has some effectivity can be naturally encoded into a (possible more
than one) integer, called its Gödel number.

Remark 1. Let K be effectively compact. It is not difficult to see that the
complement X \K is an effective open set, uniformly in K, and that if
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U is an effective open set, then K \U is effectively compact, uniformly in
U,K.

Several approaches to the computability of Borel probability measures
have been proposed and happen to give the same notion, which can then
be considered as a robust one.

Definition 2 (from [?,?,?]). Let (X, d,S) be a computable metric space.
A Borel probability measure µ on X is computable if µ(Bi1 ∪ . . .∪Bin)
are lower semi-computable, uniformly in i1, . . . , in.

Definition 3 (from [?]). A computable probability space is a pair
(X,µ) where X is a computable metric space and µ is a computable Borel
probability measure on X.

Algorithmic randomness. Martin-Löf randomness was first defined
in [?] on the space of infinite symbolic sequences. Its generalization to
abstract spaces has been investigated in [?, ?, ?, ?]. We follow the ap-
proaches [?, ?] developed on any computable probability space (X,µ).

Definition 4. A Martin-Löf test (ML-test) V is a sequence of uni-
formly effective open sets Vn such that µ(Vn) < 2−n. A point x passes
a ML-test V if x /∈

⋂
n Vn. A point is Martin-Löf random (ML-

random) if it passes all ML-tests. The set of ML-random points is de-
noted by MLµ.

Theorem 1 (adapted from [?]). Every computable probability space
(X,µ) admits a universal Martin-Löf test, i.e. a ML-test U such that for
all x ∈ X, x is ML-random ⇐⇒ x passes the test U . Moreover, for each
ML-test V there is a constant c (computable from any Gödel number of
V ) such that Vn+c ⊆ Un for all n.

From now and beyond, we fix a particular universal ML-test U . One
can assume w.l.o.g. that Un+1 ⊆ Un.

When the underlying space is complete, even if is is unbounded the fi-
nite character of probability measures makes the probabilistic phenomena
concentrate in a small region. This is formally expressed by Prokhorov
theorem: on a complete separable metric every Borel probability measure
is tight. We prove its effective version:

Theorem 2 (Effective Prokhorov theorem). On a complete com-
putable metric space, every computable Borel probability measure is effec-
tively tight: the sets Kn := X \ Un are uniformly effective compact sets
and µ(Kn) > 1− 2−n.
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The proof of this result uses the following theorem taken from [?]
(Thm. 5.1.1 and Cor. 6.2.1).

Theorem 3. For every (X,µ) computable probability space there is a
computable measure ν on the Cantor space {0, 1}IN such that MLµ and
MLν are computably homeomorphic, i.e. there is a computable bijection
F : MLν → MLµ with computable inverse. This homeomorphism pushes
ν to µ.

Effective measurability. The following is an adaptation of [?] to com-
plete spaces. Let [S]µ be the set of Borel subsets of X quotiented by the
equivalence relation A ∼µ B ⇐⇒ dµ(A,B) := µ(A∆B) = 0. dµ is a
metric on [S]µ, which has a natural computable metric structure.

Definition 5. A Borel set A is µ-recursive if [A]µ is a computable point
of [S]µ. A measurable function f : (X,µ) → Y is µ-recursive if there
is a basis B̂ = {B̂1, B̂2, . . .} of Y effectively equivalent to B such that
f−1(B̂i) are uniformly µ-recursive.

Definition 6. A set A is effectively µ-measurable if there are uni-
formly effective compact sets Cn and open sets Un such that Cn ⊆ A ⊆ Un
and µ(Un \ Cn) < 2−n. A function f : X → Y is effectively µ-
measurable if there is a basis B̂ = {B̂1, B̂2, . . .} of Y effectively equiva-
lent to B such that f−1(B̂i) are uniformly effectively µ-measurable.

In the original definition the sets Cn are complements of effective open
sets. When the space is complete, requiring Cn to be effectively compact
gives the same notion, using effective tightness (Thm. 2) and Rmk. 1.

Theorem 4 (from [?]).

1. A is µ-recursive ⇐⇒ A is equivalent to an effectively µ-measurable
set.

2. f is µ-recursive ⇐⇒ f is equivalent to an effectively µ-measurable
function.

3 Layerwise computability

Now we enter in the main novelty of this article. With effective versions
of measure-theoretic notions at our disposal, one can hope to solve Prob-
lem 1. However the notions developed so far are difficult to handle (and
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rather heavy, see Def. 6) or even not well-defined on algorithmically ran-
dom points (see Def. 5). It was demonstrated in [?] that algorithmic ran-
domness and the universal test offer an alternative elegant way of han-
dling effective measurability notions. Let (X,µ) be a complete computable
probability space. It comes with a canonical universal ML-test Un, with
Un+1 ⊆ Un. We proved that the sets Kn := X \Un are uniformly effective
compact sets (Thm. 2). Hence the set of ML-random points is layered by
an increasing sequence of effective compact sets: ML =

⋃
nKn.

Definition 7 (Martin-Löf Layering). Let (X,µ) be a computable prob-
ability space. We call the sequence (Kn)n∈IN the Martin-Löf layering
of the space.

Definition 8 (Layerwise computability notions).

1. A set A ⊆ X is layerwise semi-decidable if for all n, A is effec-
tively open on Kn, uniformly in n, i.e. there are uniformly effective
open sets Un such that A ∩Kn = Un ∩Kn,

2. A set A ⊆ X is layerwise decidable if for all n, A is decidable on
Kn, uniformly in n, i.e. both A and X\A are layerwise semi-decidable,

3. A function f : (X,µ) → Y is layerwise computable if for all n,
f is computable on Kn, uniformly in n, i.e. f−1(Bi) are uniformly
layerwise semi-decidable.

More generally, every computability (or effective topological) notion
has its layerwise counterpart4. For instance, the layerwise counterpart of
effective uniform convergence (i.e, in the sup norm) of functions will be
examined in section 4. In general, layerwise computability is not stable
under composition, simply because layerwise computable functions may
not preserve randomness. This can be overcome under measure preseva-
tion:

Proposition 1 (from [?]). Let (X,µ) be a computable probability space
and T : X → X a layerwise computable function which preserves µ (i.e.
µ ◦ T−1 = µ). Then:

1. T preserves ML-randomness. Moreover there is a contant c such that
T (Kn) ⊆ Kn+c for all n.

2. If f : X → Y is layerwise computable then so is f ◦ T , uniformly in
f and T .

4 Layerwise computable functions should not be confused with compact-computable
functions as defined in [?]. Indeed, the compact sets involved in [?] are not only
effectively compact but also effectively closed, i.e. they contain a dense sequence of
computable points (which is of course not the case for the Kn’s, as random points
are generally not computable).
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3.1 Relation with effective measurability

If T : X → X is measurable and preserves µ, then T−1 : [S]µ → [S]µ is
well-defined and continuous. In [?], we prove the following equivalences:

Theorem 5. Let A ⊆ X be a set, f : X → Y a function and T : X → X
a measure-preserving function.

1. A is effectively µ-measurable ⇐⇒ A is layerwise decidable.
2. f : X → Y is effectively µ-measurable ⇐⇒ f is layerwise com-

putable.
3. T−1 is computable ⇐⇒ T is equivalent to a layerwise computable

function.

Therefore, under effectivity assumptions measure-theoretical notions
are the layerwise versions of topological ones. Observe that the latter
are expressed without referring to µ but only to the Martin-Löf layering.
In other words, the layering catches the essential part of the probabilistic
features. This is the first illustration of the Correspondence Principle (see
Introduction).

3.2 Layerwise tests

We now state the theorem which will allow to solve Problem 1: making
theorems on random points hold under effective measurability assump-
tions. The point is that some classical results underlying the practice of
algorithmic randomness have – surprisingly – they layerwise counterpart.

Definition 9. A layerwise Martin-Löf test A is a sequence of uni-
formly layerwise semi-decidable sets An such that µ(An) < 2−n. A lay-
erwise integrable test is a layerwise lower semi-computable function
t : X → [0,+∞] such that

∫
tdµ <∞.

Theorem 6. Let U be a layerwise semi-decidable set, A a layerwise ML-
test and t a layerwise integrable test.

1. If µ(U) = 1 then MLµ ⊆ U .
2. If x is ML-random, then x /∈

⋂
nAn. Moreover, there is a constant c

(computable from a Gödel number of the sequence A) such that An+c∩
Kn = ∅ for all n.

3. If x is ML-random, then t(x) < ∞. Moreover, there is a constant c
such that t < 2n+c on Kn.
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4 Convergence of random variables

In [?] the following result for convergence of random variables on random
points is stated: if computable functions converge almost everywhere in an
effective way then they converge on ML-random points. Here we improve
this in several ways:

• using layerwise tests, we weaken the hypothesis: the functions are now
assumed to be effectively measurable only, which gives a solution to
Problem 1,
• using the layering, we get information about the speed of convergence

on random points, providing a solution to Problem 2,
• under effectivity assumptions, we get a characterization of a proba-

bilistic notion (namely, almost everywhere convergence) as the layer-
wise version of a topological one (namely, uniform convergence), which
further illustrate the Correspondence Principle, beyond Theorem 5.
• we give other results for random points under different types of as-

sumptions on the convergence of the sequence.

Observe that what follows works on any computable probability space
(algorithmic randomness was only developed on the Cantor space when [?]
was written). Let fi : X → IR be a sequence of random variables and f
another random variable (expected to be the limit of fi). Let Dn(δ) :=
{x : ∃i ≥ n, |fi − f | > δ}. It is a standard observation that the sequence
fi converge almost everywhere to f if and only if the measure of the sets
Dn(δ) tends to zero, for each δ. This motivates the following:

Definition 10. Functions fn converge effectively almost everywhere
(effectively a.e.) if µ(Dn(δ)) converge to 0, effectively from δ. In other
words there is a computable function n(δ, ε) such that µ(Dn(δ,ε)(δ)) < ε.

As already said, V’yugin [?] proved that if fn are uniformly computable
functions that converge effectively a.e. then they converge at each ML-
random point. Actually, the result also holds when the functions fn are
uniformly effectively µ-measurable. Indeed, for each δ the sets Dn(δ,2−n)(δ)
form a layerwise ML-test hence by Thm. 6 we directly get the convergence
at every ML-random point. We can even go further: the layering gives
information about the speed of convergence at each random point. By
Thm. 6 again there is a constant c (computable from a Gödel number
of the sequence fn and the function n(δ, ε)) such that, for x ∈ Kn we
have x /∈ DN (δ), with N = n(δ, 2−n−c). In other words, if we know that
x ∈ Kn we can compute a number N such that for all i ≥ N we have
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|fi(x) − f(x)| < δ. This motivates the following, which is the layerwise
version of effective convergence for the uniform norm:

Definition 11. Functions fi converge layerwise effectively uniformly
to f if for each k, the restrictions of fi to Kk converge to the restriction of
f to Kk for the uniform norm, effectively from k. In other words, there is
a computable function n(δ, k) such that ‖fi − f‖Kk

:= supKk
|fi − f | ≤ δ

for all i ≥ n(δ, k).

In the same way that uniform convergence implies pointwise conver-
gence, such functions converge on each ML random point.

Proposition 2. If fi are uniformly layerwise computable functions that
converge layerwise effectively uniformly to f then f is layerwise com-
putable.

Proof. Let us consider the well-know result: if fi are uniformly com-
putable functions that converge effectively uniformly to f then f is com-
putable. Prop. 2 being the “layerwise version” of this result, the proof of
the former can be directly obtained adding the word “layerwise” in the
proof of the latter.

As said above, effective a.e. convergence implies layerwise effective
uniform convergence. Actually this is a characterization, which provides
another illustration of the Correspondence Principle:

Theorem 7. Let fn be uniformly effectively µ-measurable functions. Then
fn converge effectively a.e. if and only if fn converge layerwise effectively
uniformly.

At the same time, this result give evidence that layerwise computabil-
ity is a solution to Problems 1 and 2: this convergence for random points
holds for effectively µ-measurable functions and not only computable ones,
and the speed of convergence can be computed from the layer a random
point belongs to.

Corollary 1. If fi are uniformly effectively µ-measurable functions that
converge effectively a.e. to f , then f is effectively µ-measurable.

Proof. This is a direct consequence of Prop. 2 using the characterizations
given in Thm. 5 and 7.
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The simplicity of this proof shall be very general, as soon as the Cor-
respondence Principle holds: a result about effective measure-theoretical
notions can be split into two parts (i) the layerwise version of the corre-
sponding result for effective topological (i.e. computability) notions (as
Prop. 2) and (ii) the characterizations of effective measure-theoretical
notions as layerwise topological ones (as Thm. 5 and 7).

Monotone convergence. The sequence fi is monotonic if fi+1 ≤ fi
for all i. When the sequence is monotonic Thm. 7 can be proved with
weaker effectivity assumptions:

Proposition 3. Let fi be a monotonic sequence of uniformly layerwise
lower semi-computable. Then the following statements are equivalent:

1. fi converge effectively a.e. to 0,
2. fi converge layerwise effectively uniformly to 0.

It is an interesting fact that for monotonic upper semi-computable
sequences, the almost everywhere convergence to 0 is always effective:

Proposition 4. Let fi be a monotonic sequence of uniformly layerwise
upper-computable functions which converge a.e. to 0. Then fi converge
effectively a.e. to 0.

Proof. Let An(δ) = {x : fn(x) ≥ δ}. On has Dn(δ) ⊆ An(δ). As the sets
X \An(δ) are uniformly layerwise semi-decidable, µ(An(δ)) are uniformly
upper semi-computable. Hence the monotonic convergence of µ(An(δ)) to
0 is effective.

Non-effective convergence. When the convergence a.e. is not effective
we can still say something concerning random points.

Theorem 8. Let fn, f be uniformly layerwise computable functions, and
c some (not necessarily computable) constant.

– If fn converge a.e. to a constant c then lim inf fn(x) ≤ c ≤ lim sup fn(x)
for all x ∈ ML.

– If fn converge a.e. to a layerwise computable function f , then lim inf fn(x) ≤
f(x) ≤ lim sup fn(x) for all x ∈ ML.
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5 Applications

5.1 Ergodic theorems for effectively measurable functions

We now apply the developed tools to solve Problem 1 for ergodic theo-
rems, namely Poincaré recurrence theorem and Birkhoff’s ergodic theo-
rem. Let us first recall the first version of Birkhoff’s theorem for random
points, proved by V’yugin [?].

Theorem 9 (Ergodic theorem for random points, V’yugin). Let
µ be a computable probability measure on X = {0, 1}IN, T : X → X
a computable measure-preserving map and f ∈ L1(X,µ) a computable
function (called observable). Then:

(i) For every ML-random sequence x, the limit f(x) := limn→∞
1
n

∑n−1
i=0 f◦

T i(x) exists.
(ii) If the system is moreover ergodic, then f(x) =

∫
f dµ for every ML-

random x.

This theorem embodies several probabilistic laws. For instance, if we
consider the system to be (σ, λ) where σ is the shift transformation5 and
λ is the uniform measure, and take as observable the indicator function
1[1] (which is computable since the cylinder [1] is a decidable set), we get
the Law of Large numbers for random sequences. Let us point out some
facts about the hypothesis of this theorem:

1. It is established for Cantor space X = {0, 1}IN,
2. the transformation T and the observable f are supposed to to be

computable.

The first point is not a real restriction, as the proof for general spaces
remains unchanged. However the second condition is an unnatural restric-
tion as the classical Birkhoff’s result, belonging to the measure-theoretic
setting, is stated for measurable functions whereas computability corre-
sponds to the effective version of continuity. Moreover, when passing to
general (usual) spaces, this restriction becomes much more important
since the theorem cannot be applied to indicators of sets anymore (in
connected spaces only trivial sets are decidable). In [?], the Ergodic theo-
rem is extended to include functions having some discontinuities at com-
putable points6. A further step is given in [?] where the result is proved
to hold for the indicator functions of every (not necessarily constructive)
5 Defined by (σ(ω))i = ωi+1
6 These functions belong to the class of Braverman’s “graph computable functions”.
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set of continuity7. Yet, nothing can be said about some natural sets hav-
ing effective constructions, like the Smith-Volterra-Cantor set (or fat
Cantor set) whose Lebesgue measure is 1

2 but has empty interior, so it is
not a continuity set.

In what follows we give a definite solution by proving the Ergodic The-
orem for effectively measurable functions. In particular, indicator func-
tions of sets like the fat Cantor set fall in this class. As an introductory
result, let us do so with Poincaré recurrence theorem first, whose proof is
simpler.

Theorem 10 (Poincaré recurrence theorem for random points).
Let (X,µ) be a computable probability space, T : X → X an effectively
µ-measurable ergodic measure-preserving map and A a layerwise semi-
decidable set with positive measure. Then every ML-random point falls
infinitely often in A by iteration of T .

Proof. All Tn are layerwise computable, uniformly n, by Prop. 1. The set
B =

⋃
n≥1 T

−nA is a layerwise semi-decidable set. By the classical recur-
rence theorem, it has measure one, so every ML-random point belongs to
B by Thm. 6. As T preserves ML-randomness (Prop. 1), every iterate of
a ML-random point eventually falls in B.

Theorem 11 (Ergodic theorem for random points). Let (X,µ) be
a computable probability space, T : X → X an effectively µ-measurable
measure-preserving map and f ∈ L1(X,µ) be an effectively µ-measurable
observable. Then:

(i) For every ML-random point x, the limit f(x) := limn→∞
1
n

∑n−1
i=0 f ◦

T i(x) exists.
(ii) If the system is moreover ergodic, then f(x) =

∫
f dµ for every ML-

random x.

Proof. (i) The tools developed in section 3.2 allow to prove the first point
by following the original V’yugins’s proof. Given f and T , he constructs an
integrable function σ(T, f, x) which is finite iff 1

n

∑n−1
i=0 f ◦T i(x) converge.

When f and T are computable, σ is lower semi-computable hence it is
an integrable test, which proves the convergence at each random point.
Actually the definition of σ makes sense on any computable probability
space. When f and T are only effectively measurable, they are layerwise
computable by Thm. 5 hence all f◦Tn are uniformly layerwise computable
(Prop. 1). In this case, σ is then layerwise lower semi-computable so it
7 A set A is a set of µ-continuity if its boundary has µ-measure zero.
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is a layerwise integrable test; as a result, it is finite on all ML-random
points by Thm. 6, from which (i) follows. (ii) By Thm. 8, the limit is the
expected limit

∫
f dµ when the system is ergodic.

5.2 Layerwise computable speed of convergence on random
points

In this section we show how the framework developed so far provides
a solution to Problem 2. Let us first recall some results established by
Davie [?].

Davie’s results. To state them some background is needed first. On
the Cantor space, implicitely endowed with the uniform measure λ, the
compressibility coefficient of a sequence ω is defined as dλ(ω) = supn{n−
H(ω1:n)} where H(w) is the Kolmogorov-Chaitin complexity of the finite
word w. A fundamental result from algorithmic randomness and informa-
tion theory is that a sequence is ML-random w.r.t. λ if and only if dλ(ω)
is finite. Davie defines Kc := {ω : dλ(ω) ≤ c} and proves:

Theorem 12 (Davie, 2001). If Ai are uniformly effective open sets
such that

∑
i µ(Ai) is a finite computable real number, then there is a

computable function n(c) such that for all ω ∈ Kc and all m > n(c),
ω /∈ Am.

Theorem 13 (Davie, 2001). There is a computable function n(c, ε)
such that for all ω ∈ Kc and all n > n(c, ε),

∣∣∣Sn(ω)
n − 1

2

∣∣∣ < ε where Sn(ω)
is the number of ones in the prefix of ω of length n.

The equivalence between the paradigm of effective measure theory
(Martin-Löf’s approach) and the paradigm of compressibility (Chaitin’s
approach) is a strong non-trivial result, partly based on the technical
coding theorem. Davie’s results follow this line as they relate the com-
pressibility coefficient of a sequence to the way the sequence satisfies a
probability law, and thus their proofs consist in a finer use of the cod-
ing theorem. In our framework, we stay on the side of effective measure
theory. In this way, the relation between the layer a random point be-
longs to and the way it satisfy laws is much simpler to derive, as it is
essentially already contained in the existing proofs. This provides a solu-
tion to Problem 2. At the same time, as layerwise computability provides
a solution to Problem 1 too, our results hold for effectively measurable
sets/functions. As an illustration, we first state here the refined version
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of classical results in algorithmic randomness due to Solovay. The proofs
are straightforward combinations of the usual proofs together with Thm.
6. Note that the first one is the generalization of Thm. 12 due to Davie.

Proposition 5 (Borel-Cantelli 1). There is a computable function n(c, p)
such that if An are uniformly layerwise semi-decidable sets such that
α :=

∑
n µ(An) is finite and computable, then there is a constant c,

computable from a Gödel number of the sequence An and α, such that
if x ∈ Kp then x /∈ An for all n ≥ n(c, p).

We can also get a weaker result when the sum is not computable.

Proposition 6 (Borel-Cantelli 2). Let Ai be uniformly layerwise semi-
decidable sets such that

∑
i µ(Ai) < ∞. There is c, computable from a

description of the sequence Ai, such that avery x in Kn falls in the Ai’s
at most 2n+c times.

(Very) Strong Law of Large Numbers. We can now easily prove:

Theorem 14. Let Xi : (X,µ) → IR be i.i.d. effectively µ-measurable
random variables such that

∫
|Xi|4 dµ < +∞. Let Sn := X0 + · · ·+Xn−1.

Hence, there is a computable function n(c, ε) such that if x ∈ Kc then for
all n > n(c, ε),

∣∣∣Sn(x)
n −

∫
X0 dµ

∣∣∣ < ε.

Proof. All what we need is the convergence in the SLLN to be effective.
This easily follow from the classical estimate (see [?] for instance) µ{x :
∃i ≥ n, |n−1Sn(x) −

∫
X0dµ| > δ} ≤ C

(n−1)δ4
, where C is a constant

independent of n and δ. The result now follows from Theorem 7.

Effective convergence in Birkhoff’s theorem The convergence of the
Birkhoff averages is not effective in general. In [?], on the Cantor space
V’yugin builds a computable probability measure which is invariant under
the shift transformation, and such that the convergence of the averages
of 1[1] is not effective. This measure is an infinite combination of ergodic
measures and it is still an open question if a computable ergodic measure
could be built for which the convergence is not effective.

However, in [?] it is shown that for a class of ergodic systems, the
convergence in Birkhoff theorem is effective. Let us recall that a system
is ergodic if and only if for any two integrable functions f and g, the
quantity γn(f, g) :=

∣∣ 1
n

∑
i<n

∫
f ◦ T i.g dµ−

∫
f dµ

∫
g dµ

∣∣ goes to 0. A
system is said to be ln2-ergodic for (f, g), if there is a constant cf,g > 0
such that γn(f, g) ≤ cf,g

(ln(n))2
for all n ≥ 2.
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Theorem 15 (Ergodic theorem for random points). Let (X,µ) be
a computable probability space, T : X → X be an effectively measurable
measure-preserving map and f ∈ L1(X,µ) be an effectively measurable
function. If T is ln2-ergodic for (f, f), then there is a computable function
n(c, ε) such that if x ∈ Kc then for all n > n(c, ε),

∣∣ 1
n

∑
i<n f(x) ◦ T i(x)−

∫
f dµ

∣∣ <
ε.

Proof. If follows from theorem 7 and the fact (proved in [?]) that if the
system is ln2-ergodic, then the almost-sure convergence 1

n

∑
i<n f(x) ◦

T i(x)→n

∫
f dµ is effective.

Relation between Kn and Kn. Let X be the Cantor space endowed
with a computable Borel probability measure µ. The compressibility co-
efficient can be adapted to µ: it is known as the randomness deficiency
dµ(ω) := supn{− logµ[ω1:n]−H(ω1:n)}. This function is known to be the
logarithm of a universal integrable µ-test, which means that for every in-
tegrable µ-test t there is a constant a such that log t ≤ a+dµ. On the other
hand, every computable probability space admits a universal integrable
test tµ (see [?,?]). Generalizing Davie, let us define Kc := {x : tµ(x) ≤ 2c}.
As MLµ =

⋃
cK

c, the sequence (Kc)c∈IN can be used as an alternative
layering and underly alternative versions of Def. 8 and 11. Actually, this
would lead to the same notions. Indeed, using classical results from algo-
rithmic randomness and information theory (see [?,?,?]), it can be proved
that there is a constant c such that Kn ⊆ Kn+c and Kn ⊆ Kn+2 logn+c

for all n. Hence Kn are also uniformly effective compact sets and all lay-
erwise computability notions relative to Kn are equivalent to the notions
relative to Kn.

5.3 An application to Brownian motion

The study of Brownian motion from the algorithmic randomness point of
view is carried out in [?,?]. Algorithmically random paths, called complex
oscillations as they are defined in terms of Kolmogorov-Chaitin com-
plexity, are the Martin-Löf random points of the computable probability
space (C([0, 1]),W ), where C([0, 1]) is the space of continuous functions
x : [0, 1] → IR with the uniform norm and W is the Wiener probability
measure. In [?] it is proved that if t ∈ [0, 1] is computable and x is a
complex oscillation then x(t) is not computable. At the end of [?] the
following question is raised: can it be lower semi-computable?

We say that y ∈ IR is λ-ML-random if y = n + z where n ∈ ZZ
and z ∈ [0, 1] is ML-random w.r.t. the Lebesgue measure λ on [0, 1]. As
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noticed in [?], it is a corollary of [?] that x(t) is actually λ-ML-random.
But then can it be a Chaitin’s Ω (which are lower semi-computable λ-
ML-random reals)? The compactness of the layers (Thm. 2) enables us
to give a positive answer. Indeed, Prop. 1 can be reinforced using Thm.
2:

Proposition 7. Let (X,µ) and (Y, ν) be computable probability spaces
such that X is complete. Let T : X → Y be a layerwise computable
function which maps µ to ν. Then T (MLµ) = MLν , i.e. T preserves
randomness but it is also onto.

Now, given a computable t ∈ [0, 1], the function Tt : C([0, 1]) → IR
mapping x to x(t) is computable. It pushes the Wiener measure W to
a gaussian measure G. As G has bounded density w.r.t. the uniform
measure and vice versa, MLG is exactly the set of λ-ML-random reals.
Hence,

Corollary 2. Let x be a complex oscillation. For each computable t ∈
[0, 1], x(t) is λ-ML-random. Moreover, given any λ-ML-random y and
any computable t, there exists a complex oscillation x such that x(t) = y.
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A Proofs

Proof of Thm. 2

First, this is true on the Cantor space C with a computable Borel proba-
bility measure ν: C is known to be effectively compact, so Kν

n := C \Un is
effectively compact, uniformly in n (Rmk. 1). Now, we use Thm. 3, which
provides a computable function F : MLν → MLµ. The sets K ′n := F (Kν

n)
are then uniformly effectively compact, with measures µ(K ′n) > 1− 2−n.
By the universality of Un, there is a constant c such that X \K ′n+c ⊆ Un
for all n. In other words, Kn = X \ Un ⊆ K ′n+c so Kn = K ′n+c \ Un is
effectively compact, uniformly in n.

Proof of Thm. 6

1. Let x ∈ MLµ: x ∈ Kp for some p. A ∩ MLµ =
⋃
n>pA ∩ Kn =⋃

n>p Un ∩Kn ⊆
⋃
n>p Un which is a full-measure effective open set, and

then contains x ∈ MLµ. Hence x ∈ Un for some n > p. As Kp ⊆ Kn,
x ∈ Un ∩Kn = A ∩Kn.
2. Let Upn be uniformly effective open sets such that Ap ∩Kn = Upn ∩Kn.
Let V ′p =

⋃
n>p U

p
n. It is straightforward to prove that Ap ∩ML ⊆ V ′p and

µ(V ′p \Ap) < 2−p. Hence Vn = (V ′n+1) is a ML-test so there is a constant
c such that Vn+c ∩Kn = ∅ for all n, which implies An+c ∩Kn = ∅.
3. We can suppose w.l.o.g. that

∫
tdµ < 1. Let An = {x : t(x) > 2n}.

As usual, µ(An) < 2−n. Now, An = t−1(2n,+∞] is a layerwise semi-
decidable set by definition of layerwise lower computability. So An is a
layerwise ML-test, so there is c such that An+c∩Kn = ∅. Hence, t ≤ 2n+c

on Kn.

Proof of Thm. 7

First, we need some preparation. Given a sequence of random variables
fi, we define the deviation sets:

Ai,j(δ) := [|fi − fj | > δ] and Dn(δ) :=
⋃
i,j≥n

Ai,j(δ) .

If f is another function (expected to be their limit in some sense), we
also define:

Afi (δ) := [|fi − f | > δ] and Df
n(δ) :=

⋃
i≥n

Afi (δ) .
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Observe that when the sequence is monotone, we have that Afi (δ) =
Df
n(δ).

We remark that one could replace Dn(δ) by Df
n(δ) := {x : ∃i ≥

n, |fi − f | > δ} where f is the almost sure limit. Indeed, one easily has
Df
n(δ) ⊆ Dn(δ) ⊆ Df

n(δ/2) mod 0. Hence,

– let n(δ, ε) be adapted to D: it is adapted to Df .
– let n(δ, ε) be adapted to Df : n(δ/2, ε) is then adapted to D.

We now prove the result. Suppose fn converge effectively a.e. Let
Uk :=

⋃
p≥1Dn(2−p,2−k−p)(2−p). This is a layerwise effective open set and,

by definition of n(δ, ε), µ(Uk) ≤
∑

p≥1 2−k−p ≤ 2−k. Hence there is c
such that for all k, Kk ∩ Uk+c = ∅. Let m(p, k) = n(2−p, 2−k−p−c): it is a
computable function. Let x ∈ Kk: x /∈ Uk+c means that for all p ≥ 1, for
all i, j ≥ m(p, k), |fi(x)− fj(x)| ≤ 2−p. Hence, for all p, k,

‖fi − fj‖Kk
≤ 2−p for all i, j ≥ m(p, k).

Conversely, if fn converge effectively uniformly on Kk, uniformly in k,
then there is a computable function n(δ, k) such that for all i, j ≥ n(δ, k),
‖fi − fj‖Kk

< δ. Let us define the function m(δ, ε) as n(δ, k) with 2−k < ε.
As for all i, j ≥ m(δ, ε), ‖fi − fj‖Kk

< δ, it follows that

Kk ∩Dm(δ,ε)(δ) = ∅.

As µ(Kk) > 1− 2−k > 1− ε, µ(Dm(δ,ε)(δ)) < ε.

Proof of Prop. 3

(1)⇒ (2) Suppose fi → 0 effectively a.e. There is a computable function
m(k) such that

µ
({
x : fm(k)(x) > 2−k

})
< 2−k for all k.

Let Uk be this layerwise effective open set. There exists a constant c such
that for all k, Kk∩Uk+c = ∅. Hence ‖fn‖Kk

≤ 2−k−c for all n ≥ m(k+c).
(2) ⇒ (1) The same as in Theorem 7.

Proof of Thm. 8

Let x ∈ X: lim inf fn(x) ≤ c ⇐⇒ ∀q > c, k,∃n > kfn(x) < q. So for
each q > c and k, µ(

⋃
n>k{x : fn(x) < q}) = 1. When q is rational,
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this is moreover a layerwise semi-decidable set, so it contains all ML-
random points. As this is true for every rational q > 0 and every k,
lim inf fn(x) ≤ c for every ML-random point x. Replacing f by −f and
c by −c, one obtains lim sup fn(x) ≥ c. When fn converge to a layerwise
computable function f , the first result applied to fn− f gives the second
one.

Proof of Prop. 7

As the image of an effective compact set by a computable function is an
effective compact set, T (Kn) are uniformly effectively compact. As ν is
the push-forward of µ, ν(T (Kn)) = µ(T−1(T (Kn))) ≥ µ(Kn) > 1− 2−n.
Using the minimality of the layering K ′n of (Y, ν), there is a constant c
such that K ′n ⊆ T (Kn+c) for all n. Hence MLν ⊆ T (MLµ).


