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Abstract. We consider the dynamical behavior of Martin-Löf random points

in dynamical systems over metric spaces with a computable dynamics and a

computable invariant measure. We use computable partitions to define a sort
of effective symbolic model for the dynamics. Through this construction we

prove that such points have typical statistical behavior (the behavior which is

typical in the Birkhoff ergodic theorem) and are recurrent. We introduce and
compare some notions of complexity for orbits in dynamical systems and prove:

(i) that the complexity of the orbits of random points equals the Kolmogorov-
Sinäı entropy of the system, (ii) that the supremum of the complexity of orbits

equals the topological entropy.
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1. Introduction

The randomness of a particular outcome is always relative to some statistical
test. The notion of algorithmic randomness, defined by Martin-Löf in 1966, is an
attempt to have an “absolute” notion of randomness. This absoluteness is actually
relative to all “effective” statistical tests, and lies on the hypothesis that this class
of tests is sufficiently wide.

Martin-Löf’s original definition was given for infinite symbolic sequences. With
this notion each single random sequence behaves as a generic sequence of the prob-
ability space for each effective statistical test. In this way many probabilistic theo-
rems having almost everywhere statements can be translated to statements which
hold for each random sequence. As an example we cite the fact that in each infinite
string of 0’s and 1’s which is random for the uniform measure, all the digits appear
with the same limit frequency. This is a particular case, related to the strong law
of large numbers (and the Birkhoff ergodic theorem, which is informally stated at
benginning of section 3 with some more basic recall about ergodic theory). A state-
ment of this kind was given by V’yugin (Birkhoff ergodic theorem for individual
random sequences, see [V’y97] and lemma 3.2.1 below).

More recently the notion of Martin-Löf randomness was generalized to com-
putable metric spaces endowed with a measure ([PH03, Gác05, HR07]). Com-
putable metric spaces are separable metric spaces where the distance can be in
some sense effectively computed (see section 2.3 ). In those spaces, it is also possi-
ble to define “computable” functions, which are functions whose behavior is in some
sense given by an algorithm, and “computable” measures (there is an algorithm to
calculate the measure of nice sets). The space of infinite symbolic sequences, the real
line or euclidean spaces, are examples of metric spaces which become computable
in a natural way.

A particularly interesting class of general stationary stochastic processes is con-
stituted by those generated by a measure-preserving map on a metric space, these
are the objects studied by ergodic theory. In this paper we consider systems of the
type (X, T, µ), where X is a computable metric space, µ a computable probability
measure and T a computable endomorphism. The above considered symbolic shifts
on spaces of infinite sequences which preserve a computable measure are systems
of this kind.

In the classical ergodic theory, a powerful technique (symbolic dynamics) allows
to associate to a general system as above (X, T, µ) a shift on a space of infinite
strings having similar statistical properties. In section 3 we define computable
measurable partitions and construct an effective version of the above technique,
defining a sort of effective symbolic model for the dynamics. In this models random
points are associated to random infinite strings. This new tool allows to easily
generalize theorems which are proved in the symbolic setting to the more general
setting of maps and metric spaces. For example the above cited V’yugin theorem
becomes a Birkhoff theorem for random points. On this line, we also prove a
Poincaré recurrence theorem for random points. Those statements (see thm.3.2.1
and prop. 3.2.1) can be summarized as

Theorem. Let (X, µ) be a computable probability space. If x is µ-random, then
it is recurrent (see Definition 3.2.1 ) with respect to every measure preserving
endomorphism T on (X, µ). Moreover, each µ-random point x is typical for every
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ergodic endomorphism T , i.e.

lim
n→∞

1
n

n−1∑
j=0

f(T jx) =
∫

fdµ (1)

for every continuous bounded real-valued f .

In the remaining part of the paper these tools are also used to prove relations
between various definitions of orbit complexity and entropy of the systems.

In [Bru83], Brudno defined a notion of algorithmic complexity K(x, T ) for the
orbits of a dynamical system on a compact space. It is a measure of the information
rate which is necessary to describe the behavior of the orbit of x. In this point-
wise definition the information is measured by the Kolmogorov information content
(see Section 4 for precise definitions). Later, White ([Whi93]) also introduced a
slightly different version K(x, T ). The following relation between entropy and orbit
complexity was proved:

Theorem (Brudno, White). Let X be a compact topological space and T : X → X
a continuous map.

(1) For any ergodic probability measure µ the equality

K(x, T ) = K(x, T ) = hµ(T )

holds for µ-almost all x ∈ X,
(2) For all x ∈ X, K(x, T ) ≤ h(T ).

Here hµ(T ) is the Kolmogorov-Sinäı entropy of (X, T ) with respect to µ and
h(T ) is the topological entropy of (X, T ). This result seems miraculous as no
computability assumption is required on the space or on the transformation T .
Actually, this miracle lies in the compactness of the space, which makes it finite
when observations are made with finite precision (open covers of the space can
be reduced to finite open covers). Indeed, when the space is not compact, it is
possible to construct systems for which the algorithmic complexity of orbits is
correlated in no way to their dynamical complexity. In [Gal00], Brudno’s definition
was generalized to non-compact computable metric spaces. This definition coincides
with Brudno’s one in the compact case and will be given in section 4.5.

The above definitions of orbit complexities follow a topological approach. We
show that the measure-theoretic setting also provides a natural notion of orbit com-
plexity Kµ(x, T ) defined by computable partitions. This kind of orbit complexity
will be defined almost everywhere and in particular at each µ-random point. For
this notion the first result in Brudno and White’s theorem comes easily. We go
further in showing:

Theorem (4.4.2). Let T be an ergodic endomorphism of the computable probability
space (X, µ),

Kµ(x, T ) = hµ(T ) for all µ-random point x.

Here, the notion of endomorphism is in some sense a notion of computable func-
tion between computable probability spaces, see Section 2.4 for precise definitions.
We then prove that the two notions of orbit complexity coincide on Martin-Löf
random points:
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Theorem (5.0.1). Let T be an ergodic endomorphism of the computable probability
space (X, µ), where X is compact,

Kµ(x, T ) = K(x, T ) for all µ-random point x.

In the topological context, we then consider K(x, T ) and strengthen the second
part of Brudno’s theorem, showing:

Theorem (6.3.1). Let T be a computable map on a compact computable metric
space X,

sup
x∈X

K(x, T ) = sup
x∈X

K(x, T ) = h(T )

Remark that this was already implied by Brudno’s theorem, using the variational
principle: h(T ) = sup{hµ(T ) : µ is T -invariant}. Nevertheless, our proof uses
purely topological and algorithmic arguments and no measure. In particular, it
does not use the variational principle, and can be thought as an alternative proof
of it.

Many of these statements require that the dynamics and the invariant measure
are computable. The first assumption can be easily checked on concrete systems if
the dynamics is given by a map which is effectively defined.

The second is more delicate: it is well known that given a map on a metric space,
there can be a continuous (even infinite dimensional) space of probability measures
which are invariant for the map, and many of them will be non computable. An
important part of the theory of dynamical systems is devoted to selecting measures
which are particularly meaningful. From this point of view, an important class of
these measures is the class of SRB invariant measures, which are measures being in
some sense the “physically meaningful ones”(for a survey on this topic see [You02]).
It can be proved (see [GHR09b] and [GHR09a] and their references e.g.) that in
several classes of dynamical systems where SRB measures are proved to exist, these
measures are also computable from our formal point of view, hence providing several
classes of nontrivial concrete examples where our results can be applied.

2. Preliminaries

2.1. Partial recursive functions on integers and numbered sets. In this
section we recall some basic facts on recursion, mainly to fix a notation for what
follows.

The notion of algorithm has been formalized independently by Church and Tur-
ing among others. Each constructed model defines a set of partial (not defined
everywhere) functions which can be computed by some effective mechanical or
algorithmic procedure. Later, it has been proved that all this models of com-
putation define the same class of functions, namely: the set of partial recursive
functions. This fact supports a working hypothesis known as Church’s Thesis,
which states that every (intuitively formalizable) algorithm is a partial recursive
function. We will not give formal definitions, see for example, [Rog87]. With this
intuitive description it is more or less clear that there exists an effective procedure
to enumerate the class of all partial recursive functions, associating to each of them
its Gödel number, which is the number of the program computing it. Hence
there exists a universal recursive function ϕu : N → N satisfying for all e, n ∈ N,
ϕu(〈e, n〉) = ϕe(n) where e is the gödel number of ϕe and 〈, 〉 : N2 → N is some
recursive bijection. In classical recursion theory, a set of natural numbers is called
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recursively enumerable (r.e for short) if it is the range of some partial recursive
function. That is if there exists an algorithm listing the set. We denote by Ee the
r.e set associated to ϕe. Namely Ee = {ϕu(〈e, n〉) : n ∈ N}.

Strictly speaking, the above notions are defined on integers. However, when the
objects of some class have been identified with integers, it makes sense to speak
about algorithms acting on these objects.

Definition 2.1.1. A Numbered Set O is a countable set together with a surjection
νO : N → O called the numbering. We write on for ν(n) and call n a name of on.

Nk, Q, the set of partial recursive functions (by its Gödel numbers), the collection
of all r.e subsets of N are examples of numbered sets.

It is straightforward to see how the notion of recursive function and algorithmic
enumeration can be extended to numbered sets once a numbering is specified, hence
we can talk about effective functions between such sets.

2.2. Computability over the reals.

Definition 2.2.1. Let x be a real number and qi be a numbering of the rationals.
We say that:
• x is lower semi-computable if the set E := {i ∈ N : qi < x} is r.e,
• x is upper semi-computable if the set E := {i ∈ N : qi > x} is r.e,
• x is computable if it is lower and upper semi-computable.

Equivalently, a real number is computable if and only if there exists an algorith-
mic enumeration of a sequence of rational numbers converging exponentially fast
to x. That is:

Proposition 2.2.1. A real number x is computable if and only if there exists an
algorithm A : N → Q such that |A(i)− x| < 2−i, for all i.

Definition 2.2.2. Let (xn)n be a sequence of computable reals. We say that
the sequence is uniformly computable or that xn is computable uniformly in
n if there exists an algorithm A : N → Q such that for all n and i it holds
|A(〈n, i〉)− xn| < 2−i.

Uniform sequences of lower (upper) semi-computable reals are defined in the
same way.

2.3. Computable Metric Spaces. We give a short and selfcontained introduc-
tion to the concepts from computable analisys on metric spaces we need in the
following. More details on the subject can be found in [Wei00, VB08].

Definition 2.3.1. A computable metric space (CMS) is a triple X = (X, d,S),
where
• (X, d) is a separable complete metric space.
• S = (si)i∈N is a numbered dense subset of X (called ideal points).
• The real numbers (d(si, sj))〈i,j〉∈N are all computable, uniformly in 〈i, j〉.

(Rn, dRn , Qn) with the euclidean metric and the standard numbering of Qn is an
example of computable metric spaces. Another important example is the Cantor
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space ({0, 1, ..., n}N, d, S) with {0, 1, ..., n} a finite alphabet and d the usual dis-
tance1. In this case S is the set of ultimately 0-stationary sequences. For further
examples we refer to [Wei93].

Like in the real number case, let us say that a sequence of ideal points (sin
)n is

fast if d(sin
, sin+1) < 2−n for all n.

Definition 2.3.2 (Computable points). A point x ∈ X is said to be computable
if there exists an algorithm A : N×N → S which enumerates a fast sequence whose
limit is x.

As for real numbers we can give the notion of uniform sequence

Definition 2.3.3. Let (xn)n be a sequence of computable points. We say that the
sequence is uniformly computable or that xn is computable uniformly in n if
there exists an algorithm A : N → S such that for all n, the sequence (A(〈n, i〉))i

is fast and converges to xn.

The numbered set of ideal points (si)i induces the numbered set of ideal balls
B := {B(si, qj) : si ∈ S, qj ∈ Q>0}. We denote by B〈i,j〉 the ideal ball B(si, qj).

Definition 2.3.4 (R.e open sets). We say that the set U ⊂ X is r.e open if there
is some r.e set E ⊂ N such that U = ∪i∈EBi.

Remark 2.3.1. Let U be a r.e open set. It is easy to see that there is an algorithm
to semi-decide weather some ideal point belongs to U . That is, the algorithm will
halt on input i iff si ∈ U .

Definition 2.3.5. Let (Un)n be a sequence of r.e open sets. We say that the
sequence is uniformly r.e or that Un is r.e open uniformly in n if there exists an
r.e set E ⊂ N such that for all n it holds Un = ∪i∈En

Bi, where En = {i : 〈n, i〉 ∈ E}.

remarks:
• If the sequence (Un)n is uniformly r.e then the union ∪nUn is a r.e open

set.
• The universal recursive function ϕu makes the collection of all r.e open sets

(denoted U) a sequence uniformly r.e. Indeed, define E := {〈e, ϕu(〈e, n〉)〉 :
e, n ∈ N}. Then U = {Ue : e ∈ N} where Ue = ∪i∈EeBi.

• The numbered set U is closed under finite unions and finite intersections.
Furthermore, these operations are effective in the following sense: there
exists recursive functions ϕ∪ and ϕ∩ such that for all i, j ∈ N, Ui ∪ Uj =
Uϕ∪(〈i,j〉) and the same holds for ϕ∩. Equivalently: Ui ∪ Uj is r.e open
uniformly in 〈i, j〉 . See [HR07].

Definition 2.3.6 (Constructive Gδ-sets). We say that the set D ⊂ X is a con-
structive Gδ-set if it is the intersection of a sequence of uniformly r.e open sets.

Let (X, SX , dX) and (Y, SY , dY ) be computable metric spaces with UX and UY

the corresponding numbered sets of r.e open sets.

Definition 2.3.7 (Computable Functions). A function T : X → Y is said to be
computable if T−1(Bn) is r.e open uniformly in n.

1d((si), (ti)) =
∑

i(n− 1)iδ(si, ti) where δ is the usual delta function which assumes value 1 if

si = ti and zero elsewere
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Remark 2.3.2. We remark that this definition implies that the preimage of a uniform
sequence of r.e. open sets is a uniform sequence of r.e. open sets. This could be an
alternative definition of computable function.

It follows that computable functions are continuous. Since we will work with
functions which are not necessarily continuous everywhere, we shall consider func-
tions which are computable on some subset of X. More precisely,

Definition 2.3.8. A function T is said to be computable on D (D ⊂ X) if there
is a uniform sequence (UX

n )n of r.e open subsets of X such it holds T−1(Bn)∩D =
UX

n ∩ D for the uniform sequence of ideal balls Bn. D is called the domain of
computability of T .

remarks:
• Since ideal balls generate the topology, a function is computable iff T−1(BY

n )
is r.e open uniformly in n (or the intersection of D with a uniformly r.e open
set).

• If T is computable then the images of ideal points can be uniformly com-
puted, that is: T (sX

i ) is a computable point, uniformly in i.
• The distance function d : X ×X → R is a computable function.

2.4. Computable Probability Spaces (CPS). We define the concept of com-
putable probability space on a metric space. Since we consider metric spaces, this
is not the greater possible generality we can consider, but is suffiucient for our pur-
poses. When X is a computable metric space, the space of probability measures
over X, denoted by M(X), can be endowed with a structure of computable metric
space (this will be defined below, for more details, see [Gác05, HR07]). Then a
computable measure can be defined as a computable point of M(X).

Some prerequisites from measure theory: Let us endow M(X) with the weak
topology: we say that µn converge weakly to µ and write µn → µ if

µn → µ iff µnf → µf for all real continuous bounded f (2)

where µf stands for
∫

fdµ. Let us recall the Portmanteau theorem. We say that a
Borel set A is µ-continuous if µ(∂A) = 0, where ∂A = A∩X \A is the boundary
of A.

Theorem 2.4.1 (Portmanteau theorem). Let µn, µ be Borel probability measures
on a separable metric space (X, d). The following are equivalent:

(1) µn converges weakly to µ,
(2) lim supn µn(F ) ≤ µ(F ) for all closed sets F ,
(3) lim infn µn(G) ≥ µ(G) for all open sets G,
(4) limn µn(A) = µ(A) for all µ-continuity sets A.

This theorem easily implies the following: when (X, d) is a separable metric
space, weak convergence can be proved using the following criterion:

Proposition 2.4.1. Let A be a countable basis of the topology which is closed under
the formation of finite unions. If µn(A) → µ(A) for every A ∈ A, then µn converge
weakly to µ.

Let us introduce on M(X) the structure of a computable metric space. As
X is separable and complete, so is M(X). Let D ⊂ M(X) be the set of those
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probability measures that are concentrated in finitely many points of S and assign
rational values to them. It can be shown that this is a dense subset ([Bil68]).

We consider the Prokhorov metric ρ on M(X) defined by:

ρ(µ, ν) := inf{ε ∈ R+ : µ(A) ≤ ν(Aε) + ε for every Borel set A}.
where Aε = {x : d(x,A) < ε}.

This metric induces the weak topology on M(X). Furthermore, it can be shown
that the triple (M(X), D, ρ) is a computable metric space (see [Gác05], [HR07]).
By definition 2.3.2 a measure µ is then computable if there is an algorithmic enu-
meration of a fast sequence of ideal measures (µn)n∈N ⊂ D converging to µ.

The following theorem gives a characterization for the computability of measures
in terms of the computability of the measure of sets (for a proof see [HR07]):

Theorem 2.4.2. A measure µ ∈ M(X) is computable if and only if the mea-
sure µ(Bi1 ∪ . . .∪Bik

) of finite unions of ideal open balls is lower-semi-computable
uniformly in 〈i1, . . . , ik〉.

Definition 2.4.1. A Computable Probability Space (CPS) is a pair (X , µ)
where X is a computable metric space and µ is a computable Borel probability
measure on X.

Definition 2.4.2. (Morphism) Let (X , µ) and (Y, ν) be two computable probabil-
ity spaces. A morphism from (X , µ) to (Y, ν) is a measure-preserving function
F : X → Y which is computable on a constructive Gδ-set of µ-measure one.

We recall that F is measure-preserving if ν(A) = µ(F−1(A)) for every Borel set
A. Computable probability structures can be easily transferred:

Proposition 2.4.2. Let (X , µ) be a computable probability space, Y be a computable
metric space and F : X → Y a function which is computable on a constructive Gδ-
set of µ-measure one. Then the induced measure µF on Y defined by µF (A) =
µ(F−1(A)) is computable and F is a morphism of computable probability spaces.

2.5. Algorithmic randomness. Now we consider a generalization of Martin-Löf
tests to computable probability spaces. Let (X , µ) be a computable probability
space.

Definition 2.5.1. A Martin-Löf µ-Test is a sequence (Un)n∈N of uniformly r.e
open sets which satisfy µ(Un) < 2−n for all n. Any subset of

⋂
n Un is called an

effective µ-null set.

Definition 2.5.2. A point x ∈ X is called µ-random if x is contained in no
effective µ-null set. The set of µ-random points is denoted Rµ.

Note that µ(Rµ) = 1. The following is the generalization for metric spaces of
a classical result in Cantor space due to Martin-Löf. It says that the set of non-
random points is not only a null set but an effective null set. For a proof see
[HR07].

Theorem 2.5.1. The union of all effective µ-null sets, denoted by Nµ, is again an
effective µ-null set.

Thus, there is a single Martin-Löf test (often called universal) which tests non-
randomness, and Rµ = N c

µ.
We will need the following results (see [HR07] or [PH03], Thm 4.5).
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Lemma 2.5.1. Every µ-random point is in every r.e open set of full measure.

Proposition 2.5.1 (Morphisms of CPS preserve randomness). Let F be a mor-
phism of computable probability spaces (X , µ) and (Y, ν). Then every µ-random
point x is in the domain of computability of F and F (x) is ν-random.

2.6. Kolmogorov complexity. (Algorithmic Information Content) The idea is
to define, for a finite object, the minimal amount of algorithmic information from
which the object can be recovered. That is, the length of the shortest description
(code) of the object. For a complete introduction we refer to a standard text [LV93].

Let Σ∗ and ΣN be the sets of finite and infinite words (over the finite alphabet
Σ) respectively. A word w ∈ Σ∗ defines the cylinder [w] ⊂ ΣN of all possible
continuations of w. A set D = {w1, w2, ...} ⊂ Σ∗ defines an open set [D] = ∪i[wi] ⊂
ΣN. D is called prefix-free if no word of D is prefix of another one, that is if the
cylinders [wi] are pairwise disjoint.

Let X be Σ∗ or N or N∗.

Definition 2.6.1. An interpreter is a partial recursive function ϕ : {0, 1}∗ → X
which has a prefix-free domain.

Definition 2.6.2. Let I : {0, 1}∗ → X be an interpreter. The complexity (or
Information Content) KI(x) of x ∈ X is defined to be

KI(x) =
{
|p| if p is a shortest input such that I(p) = x
∞ if there is no p such that I(p) = x

It turns out that there exists an algorithmic enumeration of all interpreters,
which entails the existence of a universal interpreter U which is asymptotically
optimal in the sense that the invariance theorem holds:

Theorem 2.6.1 (Invariance theorem). For all interpreter I there exists cI ∈ N
such that for all x ∈ X we have KU (x) ≤ KI(x) + cI .

We fix a universal interpreter U and we let K(x) = KU (x).

2.6.1. Estimates. Let us recall some simple estimates of complexity. Let f, g be
real-valued functions. We say that g additively dominates f and write f <

+
g if

there is a constant c such that f ≤ g + c. As codes are always binary words, we
use base-2 logarithms, which we denote by log. We define J(x) = x + 2 log(x + 1)
for x ≥ 0.

For n ∈ N, K(n) <
+

J(log n). For n1, . . . , nk ∈ N, K(n1, . . . , nk) <
+

K(n1) + . . . +
K(nk). The following property is a version of a result attributed to Kolmogorov,
stated in terms of prefix complexity instead of plain complexity.

Proposition 2.6.1. Let E ⊆ N×X be a r.e. set such that En = {x : (n, x) ∈ E}
is finite for all n. Then for (s, n) with s ∈ En,

K(s) <
+

J(log |En|) + K(n)

Proposition 2.6.2. Let µ be a computable measure on ΣN. For all w ∈ Σ∗,

K(w) <
+
− log µ([w]) + K(|w|)

Theorem 2.6.2 (Coding theorem). Let P : X → R+ be a lower semi-computable
function such that

∑
x P (x) ≤ 1. Then K(x) <

+ − log P (x), i.e. there is a constant
c such that K(x) ≤ − log P (x) + c for all x ∈ X.
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Moreover,
∑

x 2−K(x) ≤ 1 as it is the Lebesgue measure of the domain of the
universal interpreter U . There is a relation between Kolmogorov complexity and
randomness, initial segments of random infinite strings being maximally complex.

Theorem 2.6.3 (Chaitin, Levin). Let µ be a computable measure. Then ω ∈ ΣN

is a µ-random sequence if and only if ∃m ∀n K(ω1:n) ≥ − log µ[ω1:n]−m.

The minimal such m, defined by dµ(ω) := supn{− log µ[ω1:n] − K(ω1:n)} and
called the randomness deficiency of ω w.r.t µ, is not only finite almost every-
where: it has finite mean, that is

∫
dµ(ω)dµ ≤ 1. For a proof see [LV93].

3. Effective symbolic dynamics and statistics of random points

Let us recall some basic fact about ergodic theory (see [Pet83], [Wal82] for an
introduction). Let X be a metric space, let T : X 7→ X be a Borel measurable
map. Let µ be an invariant measure, i.e. a Borel measure on X such that µ(A) =
µ(T−1(A)) for each measurable set Z. A set A, moreover is called T -invariant
if T−1(A) = A(mod0) (the symmetric difference between the two sets has zero
measure). The system (T, µ) is said to be ergodic if each T -invariant set has total
or null measure. In such systems the famous Birkhoff ergodic theorem says that
time averages computed along µ typical orbits coincides with space average with
respect to µ. More precisely, for any f ∈ L1(X) and it holds

lim
n→∞

Sf
n(x)
n

=
∫

fdµ, (3)

for µ almost each x, where Sf
n = f + f ◦ T + . . . + f ◦ Tn−1.

In this section we will consider a dynamics T on (X , µ) which is computable
in some weak sense (an endomorphism of computable probability space as defined
above) and look at the abilities of random points (which are a priori independent
of T ) to describe the statistical properties of T .

3.1. Symbolic dynamics of random points. Let hence T be an endomorphism
of (X, µ). In the classical construction of symbolic dynamics associated to a given
system, one considers access to the system given by a finite measurable partition,
that is a finite collection of pairwise disjoint Borel sets P = {p1, . . . , pk} such that
µ(∪ipi) = 1. Then, to (X, µ, T ) is associated a symbolic dynamical system (XP , σ)
(called the symbolic model of (X, T,P)). The set XP is a subset of {1, 2, . . . , k}N.
To almost each point x ∈ X corresponds an infinite sequence ω = (ωi)i∈N = φP(x)
defined by:

φP(x) = ω ⇔ ∀j ∈ N, T j(x) ∈ pωj

The transformation σ : XP → XP is the shift defined by σ((ωi)i∈N) = (ωi+1)i∈N.
As P is a measurable partition, the map φP is measurable and then the measure

µ induces the measure µP (on the associated symbolic model) defined by µP(B) =
µ(φ−1

P (B)) for all measurable B ⊂ XP .
The requirement of φP being measurable makes the symbolic model appropriate

from the measure-theoretic view point, but is not enough to have a symbolic model
compatible with the computational approach:

Definition 3.1.1. Let T be an endomorphism of the computable probability space
(X , µ) and P = {p1 . . . , pk} a finite measurable partition. The associated symbolic
model (XP , µP , σ) is said to be an effective symbolic model if the map φP :
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X → {1, . . . , k}N is a morphism of CPS (here the space {1, . . . , k}N is endowed with
the standard computable structure).

The sets pi are called the atoms of P and we denote by P(x) the atom containing
x (if there is one). Observe that φP is computable on its domain only if the atoms
are open r.e sets (in the domain). We hence define:

Definition 3.1.2 (Computable partitions). A measurable partition P is said to be
a computable partition if its atoms are r.e open sets.

Conversely:

Theorem 3.1.1. Let T be an endomorphism of the CPS (X, µ) and P = {p1 . . . , pk}
a finite computable partition. Then the associated symbolic model is effective.

Proof. Let D be the domain of computability of T (it is a full-measure constructive
Gδ). Define the set

XP = D ∩
⋂
n∈N

T−n(p1 ∪ . . . ∪ pk)

XP is a full-measure constructive Gδ-set: indeed, as p1 ∪ . . . ∪ pk is r.e. and T is
computable on D there are uniformly r.e. open sets Un such that D ∩ T−n(p1 ∪
. . . ∪ pk) = D ∩ Un, so XP = D ∩

⋂
n Un. As T is measure-preserving, all Un have

measure one.
Now, XP ∩φ−1

P [i0, . . . , in] = XP ∩ pi0 ∩ T−1pi1 ∩ . . .∩ T−npin
. This proves that

φP is computable over XP . Proposition 2.4.2 allows to conclude. �

After the definition an important question is: are there computable partitions?
the answer depends on the existence of open r.e sets with a zero-measure boundary.

Definition 3.1.3. A set A is said to be almost decidable if there are two r.e
open sets U and V such that:

U ⊆ A, V ⊆ Ac, µ(U) + µ(V ) = 1

remarks:
• a set is almost decidable if and only if its complement is almost decidable,
• an almost decidable set is always a continuity set,
• a µ-continuity ideal ball is always almost decidable,
• unless the space is disconnected (i.e. has non-trivial clopen subsets), no

set can be decidable, i.e. semi-decidable (r.e) and with a semi-decidable
complement (such a set must be clopen2). Instead, a set can be decidable
with probability 1: there is an algorithm which decides if a point belongs
to the set or not3, for almost every point. That is why we call it almost
decidable.

Ignoring computability, the existence of open µ-continuity sets directly follows
from the fact that the collection of open sets is uncountable and µ is finite. The
problem in the computable setting is that there are only countable many open
r.e sets. Fortunately, there still always exists a basis of almost decidable balls.
This will be used many times in the sequel, in particular it directly implies the

2In Cantor space for example (which is totally disconnected), every cylinder (ball) is a decidable

set. Indeed, deciding if some infinite sequence belongs to some cylinder reduces to a finite pattern-

matching.
3ICI FAUT SPECIFIER DANS QUEL SENSE (OU ELIMINER?)
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existence of computable partitions. Similar results were also obtained in [HR07,
Bos08a, Bos08b] with other techniques. For completeness we present a different,
self-contained proof.

Theorem 3.1.2. In a CPS there is a family of uniformly computable reals (ri
n)i,n∈N

such that for all i, {ri
n : n ∈ N} is dense in R+ and such that for every i, n, the ball

B(si, r
i
n) is almost decidable.

Proof. Let si be an ideal point. Put I〈j,k〉 = [qj , qk] with qj , qk positive rational
numbers. We show that for every n = 〈j, k〉 we can compute, uniformly in n, a
real ri

n ∈ In for which µ(∂B(si, r
i
n)) = 0. First observe that for a closed interval

I = [a, b] (a, b ∈ Q), the complement of BI = B(si, b) \ B(si, a), is r.e open. Then
by corollary 2.4.2, its measure is lower semi-computable and then we can semi-
decide for a given rational q the relation µ(BI) < q. The algorithm computing ri

n

enumerates a sequence of nested closed intervals (Jk)k∈N whose length tends to 0,
with J0 = In, and such that for all k, µ(BJk

) < 2−k+1. Then {ri
n} = ∩k≥1Jk. It

works as follows:
In stage k+1 (the interval Jk = [a, b] has already been found), put m = b−a

3 and
test in parallel µ(B[a,a+m]) < 2−k and µ(B[b−m,b]) < 2−k. Since µ(BJk

) < 2−k+1,
one of the tests must stop, and then provides the “good” interval Jk+1 for which
the condition holds. �

We denote by B〈i,n〉 the almost decidable ball B(si, r
i
n).

The family {B〈i,n〉 : i, n ∈ N} is a basis for the topology. It is even effectively
equivalent to the basis of ideal balls : every ideal ball can be expressed as a r.e.
union of almost decidable balls, and vice-versa.

We finish presenting some results that will be needed in the next subsection.

Corollary 3.1.1. On every computable probability space, there exists a family of
uniformly computable partitions which generates the Borel σ-algebra.

Proof. Take P〈i,n〉 = {B(si, r
i
n), X \ B(si, r

i
n)} where B is the closed ball: as the

almost decidable balls form a basis of the topology, the σ-algebra generated by the
Pk is the Borel σ-field. �

Proposition 3.1.1. If A is almost decidable then µ(A) is a computable real number.

Proof. Since U and V are r.e open, by theorem 2.4.2 their measures are lower-semi-
computable. As µ(U) + µ(V ) = 1, their measures are also upper-semi-computable.

�

The following regards the computability of inducing a measure in a subset and
will be used in the proof of prop. 3.2.1

Proposition 3.1.2. Let µ be a computable measure and A be an almost decidable
subset of X with µ(A) > 0. Then the induced measure µA(.) = µ(.|A) is computable.
Furthermore, RµA

= Rµ ∩A.

Proof. let W = Bn1 ∪ . . . ∪Bnk
be a finite union of ideal balls.

µA(W ) = µ(W ∩A)/µ(A) = µ(W ∩ U)/µ(A).

W ∩ U is a r.e open set, so its measure is lower semi-computable. As µ(A) is
computable, µA(W ) is lower semi-computable. Note that everything is uniform in
〈n1, . . . , nk〉. The result follows from theorem 2.4.2.
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Let U and V as in the definition of an almost decidable set. First note that
Rµ∩A = Rµ∩U , as Rµ ⊆ U ∪V by lemma 2.5.1. Again by lemma 2.5.1, RµA

⊆ U ,
and as µA ≤ 1

µ(A)µ, every µ-effective null set is also a µA-effective null set, so
RµA

⊆ Rµ. Hence, we have RµA
⊆ Rµ ∩ U .

Conversely, Rc
µA

being a µA-effective null set, its intersection with U is a µ-
effective null set, by definition of µA. So Rc

µA
∩ U ⊆ Rc

µ, which is equivalent to
Rµ ∩ U ⊆ RµA

. �

3.2. Some statistical properties of random points. With the tools developed
so far, it is possible to translate many results of the form

µ{x : P (x)} = 1,

with P some predicate, into an “individual” result of the form:

“If x is µ-random, then P (x)”.

In this section we give two examples: recurrence and statistical typicality. We
recall that the Poincare recurrence theorem states that in a measure preserving
transformation, for each set E almost each orbit starting from E comes back to E
infinitely often. On a metric space we can also consider:

Definition 3.2.1. Let X be a metric space. A point x ∈ X is said to be recurrent
for a transformation T : X → X, if lim infn d(x, Tnx) = 0.

It is well known that in a measure preserving transformation almost each point
are recurrent, under suitable computability assumptions the same hold for all ran-
dom points.

Proposition 3.2.1 (Random points are recurrent). Let (X, µ) be a computable
probability space. If x is µ-random, then it is recurrent with respect to every mea-
sure preserving endomorphism T on (X, µ).

Proof. Take x ∈ Rµ and B an almost decidable neighborhood of x. Then by
definition of random point µ(B) > 0 (if there was a r.e. open set of zero measure
containing the point, this would be an effectively null set containing it) and since
B is almost decidable there is a r.e open set U such that:⋃

n≥1

T−nB = U ∩D

where D is the domain of computability of T . By the Poincaré recurrence theorem,
this set has full measure for µB(.) = µ(.|B). By proposition 3.1.2, x ∈ RµB

, so by
lemma 2.5.1, x is in U . �

We now prove that random points satisfy a stronger property to be used in the
sequel: statistical typicality. Let us then introduce this concept.

Let X be a metric space and T be a continuous transformation on X. Let Cb(X)
be the space of bounded real-valued continuous functions on X. For f ∈ Cb(X)
define:

f(x) := lim
n→∞

1
n

n−1∑
j=0

f(T jx) (4)
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at the points x where this limit exists. We recall that a point x is called generic
for T if f(x) is defined for every f ∈ Cb(X).

Every generic point x generates a probability measure µx which is invariant for
T , dually defined by: ∫

X

fdµx = f(x) for all f ∈ Cb(X). (5)

In other words, x is generic if the measure νn = 1
n

∑
j<n δT jx converges weakly

to µx, where δy is the Dirac probability measure concentrated on y. Let µ be an
ergodic measure for T . A generic point x is said to be µ-typical if µx = µ. The
Birkhoff ergodic theorem, in other words says that for each ergodic measure µ, the
set of µ-typical points has µ-measure one.

From a statistical point of view, µ-typical points are those whose orbits reproduce
the main statistical features of µ (in particular they are a total measure set), hence
in some sense they are random for the dynamic.

What algorithmically random points have to do with dynamically random points?

This problem has already been studied by V’yugin ([V’y97]) in the particular case
of the Cantor space and for computable observables. We prove a general version
which applies to computable dynamics on any computable probability space, for
any bounded continuous (not necessarily computable) observable. The strategy is
simple: we use computable partitions to construct effective symbolic models and
use the following particular case of V’yugin’s main theorem.

Lemma 3.2.1. Let µ be a computable shift-invariant ergodic measure on the Cantor
space {0, 1}ω. Then for each µ-random sequence ω:

lim
n

1
n

n∑
i=0

ωi = µ([1]) (6)

We are now able to prove:

Theorem 3.2.1. Let (X, µ) be a computable probability space. Then each µ-random
point x is µ-typical for every ergodic endomorphism T .

We remark that the theorem holds uniformly for all bounded continuous observ-
ables and all ergodic endomorphisms.

Proof. Let fA be the characteristic function of the set A. First, let us show that if
A is an almost decidable set then for all µ-random point x:

lim
n

1
n

n∑
i=0

fA ◦ T i(x) = µ(A) (7)

Indeed, consider the computable partition defined by P := {U, V } with U and V
as in definition 3.1.3 and the associated symbolic model (XP , σ, µP). By Theorem
3.1.1 and Proposition 2.5.1 φP(x) is a well defined µP -random infinite sequence, so
lemma 3.2.1 applies and gives (7). This can be reformulated as the convergence of
νn(A) to µ(A). Now, the collection of almost decidable sets satisfies proposition
2.4.1, so νn converges weakly to µ: x is µ-typical. �
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4. Measure-theoretic entropies

Suppose that symbols from a finite alphabet are produced by some source at each
integer time. The tendency of the source toward producing such object more than
such other can be modeled by a probability distribution. The Shannon entropy of
the source measures the degree of uncertainty about future symbols.

Any ergodic dynamical system (X, T, µ) can be seen as a source of outputs.
Kolmogorov and Sinäı adapted Shannon’s theory to dynamical systems in order
to measure the degree of unpredictability or chaoticity of an ergodic system. The
first step consists in discretizing the space X using finite partitions. Let ξ =
{C1, . . . , Cn} be a finite measurable partition of X. Then let T−kξ be the partition
whose atoms are the pre-images T−kCi. Then let

ξn = ξ ∨ T−1ξ ∨ T−2ξ ∨ . . . ∨ T−(n−1)ξ

be the partition given by the sets of the form

Ci0 ∩ T−1Ci1 ∩ . . . ∩ T−(n−1)Cin−1 ,

varying Cij among all the atoms of ξ. Knowing which atom ξn a point x belongs
to comes to knowing which atoms of the partition ξ the orbit of x visits up to time
n− 1.

The measure-theoretical entropy of the system w.r.t the partition ξ can then be
thought as the rate (per time unit) of gained information (or removed uncertainty)
when observations of the type “Tn(x) ∈ Ci” are performed. This is of great im-
portance when classifying dynamical systems: it is a measure-theoretical invariant,
which enables one to distinguish non-isomorphic systems.

We briefly recall the definition. For more details, we refer the reader to [Bil65],
[Wal82], [Pet83], [HK95].

4.1. Entropy with Shannon information. Given a partition ξ and a point x,
ξ(x) denotes the atom of the partition x belongs to. Let us consider the Shan-
non information function relative to the partition ξn (the information which is
gained by observing that x ∈ ξn(x)),

Iµ(x|ξn) := − log µ(ξn(x))

and its mean, the entropy of the partition ξn,

Hµ(ξn) :=
∫

X

Iµ(.|ξn)dµ =
∑

C∈ξn

−µ(C) log µ(C)

The measure-theoretical or Kolmogorov-Sinäı entropy of T relative to the
partition ξ is defined as:

hµ(T, ξ) = lim
n→∞

1
n

Hµ(ξn).

(which exists and is an infimum, since the sequence Hµ(ξn)n is sub-additive). With
the Shannon information function, it is possible to define a kind of point-wise notion
of entropy with respect to a partition ξ:

lim sup
n

1
n

Iµ(x|ξn).

This local entropy is related to the global entropy of the system by the celebrated
Shannon-McMillan-Breiman theorem:
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Theorem (Shannon-McMillan-Breiman). Let T be an ergodic measure preserving
transformation of (X, B, µ) and ξ a finite measurable partition. Then for µ-almost
every x,

lim
n→∞

1
n

Iµ(x|ξn) = hµ(T, ξ). (8)

The convergence also holds in L1(X, B, µ).

Now we suppress the partition-dependency: the Kolmogorov-Sinäı entropy
of (X, T, µ) is

hµ(T ) := sup{hµ(T, ξ) : ξ finite measurable partition}
We recall the following two results that we will need later. The first proposition

follows directly from the definitions.

Proposition 4.1.1. If (ΣN, µξ, σ) is the symbolic model associated to (X, µ, T, ξ)
then hµ(T, ξ) = hµξ

(σ).

The next proposition is taken from [Pet83]:

Proposition 4.1.2. If (ξi)i∈N is a family of finite measurable partitions which
generates the Borel σ-field up to sets of measure 0, then hµ(T ) = supi hµ(T, ξ0 ∨
... ∨ ξi).

4.2. Entropy with Kolmogorov information. In this section, T is an endo-
morphism of the computable probability space (X, µ) and ξ = {C1, . . . , Ck} is a
computable partition. Let (ΣN, µξ, σ) be the effective symbolic model of (X, µ, T, ξ)
where Σ = {1, . . . , k} (see section 3.1).

Kolmogorov introduced his algorithmic information content (see Section 2.6 ) as
a quantity of information, on the same level as Shannon information. When the
measure, the transformation and the partition are computable, it makes sense to
define the algorithmic equivalents of the notions defined above. It turns out that
the two points of view are strongly related.

An atom C of the partition ξn can then be seen as a word of length n on the
alphabet Σ, which allows one to consider its Kolmogorov complexity K(C). For
those points whose all iterates are covered by ξ (they form a constructive dense Gδ

of full measure), we define the Kolmogorov information function relative to
the partition ξn:

I(x|ξn) := K(ξn(x))
which is independent of µ. We can then define algorithmic entropy of the par-
tition ξn as the mean of I:

Hµ(ξn) :=
∫

X

I(.|ξn)dµ =
∑

C∈ξn

µ(C)K(C).

We also define a local notion of algorithmic entropy, which we call symbolic orbit
complexity:

Definition 4.2.1 (Symbolic orbit complexity). Let T be an endomorphism of the
computable probability space (X, µ). For any finite computable partition ξ, we
define Kµ(x, T |ξ) := lim supn

1
nI(x|ξn). Then, we can suppress the dependence on

ξ by taking the supremum over all computable partitions:

Kµ(x, T ) := sup{Kµ(x, T |ξ) : ξ computable partition}
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The quantity Kµ(x, T |ξ) was introduced by Brudno in [Bru83] without any com-
putability restriction on the space, the measure nor the transformation. He proved:

Theorem 4.2.1 (Brudno). Kµ(x, T |ξ) = hµ(T, ξ) for µ-almost every point.

Remark 4.2.1. Already Brudno remarked that if x has not an eventually periodic
orbit, by taking the supremum of Kµ(x, T |ξ) over all (not necessarily computable)
finite partitions ξ generally gives an infinite quantity, that is why Brudno did not
go further, and proposed a topological definition using open covers instead of parti-
tions. Our approach resticts the class of admissible partitions we consider (see also
[BV04] section 4 or [Ken08]) to some class of regular but meaningful partitions.

4.3. Equivalence between local entropies. We will compare Kµ and Brudno
orbit complexity in section 4.5, we now show that the hypothesis of definition 4.2.1
enables one to derive Brudno’s theorem in a rather simple manner.

The theory of randomness and Kolmogorov complexity on the space of symbolic
sequences provides powerful results (theorem 2.6.3 and proposition 2.6.2) which
enable to relate the algorithmic entropies Iµ and Hµ to the Shannon entropies Iµ

and Hµ (inequalities (10), (12)). We recall these two results: if ΣN is endowed with
a computable probability measure ν, then for all ω ∈ ΣN,

− log ν[ω0..n−1]− dν(ω) ≤ K(ω0..n−1) <
+ − log ν[ω0..n−1] + K(n) (9)

where dν is the deficiency of randomness, which satisfies
∫
ΣN dνdν < 1 and is finite

exactly on Martin-Löf random sequences (the constant in <
+

does not depend on
ω and n, see section 2.6.1).

Applying (9) to ν = µξ directly gives:

Iµ(.|ξn)− dµ ◦ φξ ≤ I(.|ξn) <
+

Iµ(.|ξn) + K(n) (10)

where it is defined (almost everywhere, at least on random points). Every µ-Martin-
Löf random point x is mapped by φξ on a µξ-Martin-Löf random sequence (see
proposition 2.5.1), whose randomness deficiency is finite. It then follows that the
local entropies using Shannon information and Kolmogorov information coincide
on µ-random points:

Proposition 4.3.1.

Kµ(x, T |ξ) = lim sup
n

1
n

I(x|ξn) for every µ-Martin-Löf random point x (11)

This equality together with the Shannon-McMillan-Breiman theorem (8) give
directly Brudno’s theorem (theorem 4.2.1).

Remark 4.3.1 (Equivalence between global entropies). Now, the Kolmogorov-Sinäı
entropy, originally expressed using Shannon entropy, can be expressed using algo-
rithmic entropy. Taking the mean in (10), one obtains:

Hµ(ξn)− 1 ≤ Hµ(ξn) <
+

Hµ(ξn) + K(n) (12)

So,

hµ(T |ξ) = lim
n

Hµ(ξn)
n

= lim
n

Hµ(ξn)
n

As the collection of computable partitions is generating (see corollary 3.1.1 and
proposition 4.1.2), the Kolmogorov-Sinäı entropy of (X, µ, T ) can be characterized
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by:

hµ(T ) = sup
{

lim
n

Hµ(ξn)
n

: ξ finite computable partition
}

.

It then follows that Kµ(x, T ) = hµ(T ) for µ-almost every x. We now strengthen
this, proving that it holds for all Martin-Löf random points.

4.4. Orbit complexity vs entropy. On the Cantor space, V’yugin ([V’y98])
and later Nakamura ([Nak05]) proved a slightly weaker version of the Shannon-
McMillan-Breiman for Martin-Löf random sequences. In particular, we will use:

Theorem 4.4.1 (V’yugin). Let µ be a computable shift-invariant ergodic measure
on ΣN. Then, for any µ-Martin-Löf random sequence ω,

lim sup
n→∞

− 1
n

log µ([ω0..n−1]) = hµ(σ).

Note that it is not known yet if the limit exists for all random sequences.
Using effective symbolic models, this can be easily extended to any computable

probability space.

Corollary 4.4.1 (Shannon-McMillan-Breiman for random points). Let T be an er-
godic endomorphism of the computable probability space (X, µ), and ξ a computable
partition. For every µ-Martin-Löf random point x,

lim sup
n→∞

− 1
n

log µ(ξn(x)) = hµ(T, ξ).

Proof. Since ξ is computable, the symbolic model (Xξ, µξ, σ) is effective. Every µ-
Martin-Löf random point x is mapped to a µξ-Martin-Löf random sequence ω, for
which the preceding theorem holds. Using the facts that µ(ξn(x)) = µξ([ω0..n−1])
and hµ(T, ξ) = hµξ

(σ) allows to conclude. �

Finally, this implies our first announced result:

Theorem 4.4.2. Let T be an ergodic endomorphism of the computable probability
space (X, µ). For every µ-Martin-Löf random point x:

Kµ(x, T ) = hµ(T ).

Proof. We combine equality (11) and corollary 4.4.1: for every random point x,
Kµ(x, T |ξ) = lim supn

1
nIµ(x|ξn) = hµ(T, ξ). Since the collection of all computable

partitions generates the Borel σ-field (corollary 3.1.1), Kµ(x, T ) = sup{hµ(T, ξ) :
ξ computable partition} = hµ(T ) (proposition 4.1.2). �

4.5. Orbit complexity. In this section, (X, d,S) is a computable metric space
and T : X → X a transformation (for the moment, no continuity or computability
assumption is put on T ). We will consider a notion of orbit complexity which quan-
tifies the algorithmic information needed to describe the orbit of x with finite but
arbitrarily accurate precision. The definition we will give coincide with Brudno’s
original definition on compact spaces (see [Gal00]).

Given ε > 0 and n ∈ N, the algorithmic information that is needed to list a
sequence of ideal points which follows the orbit of x for n steps at a distance less
than ε is:

Kn(x, T, ε) := min{K(i0, . . . , in−1) : d(sij , T
jx) < ε for j = 0, . . . , n− 1}

where K is the self-delimiting Kolmogorov complexity.
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We then define the maximal and minimal growth-rates of this quantity:

K(x, T, ε) := lim sup
n→∞

1
n
Kn(x, T, ε)

K(x, T, ε) := lim inf
n→∞

1
n
Kn(x, T, ε).

As ε tends to 0, these quantities increase (or at least do not decrease), hence
they have limits (which can be infinite).

Definition 4.5.1. The upper and lower orbit complexities of x under T are
defined by:

K(x, T ) := lim
ε→0+

K(x, T, ε)

K(x, T ) := lim
ε→0+

K(x, T, ε).

Remark 4.5.1. If T is computable, and assuming that ε takes only rational val-
ues, the n first iterates of x could be ε-shadowed by the orbit of a single ideal
point instead of a pseudo-orbit of n ideal points. Actually it is easy to see that
it gives the same quantities K(x, T, ε) and K(x, T, ε): let K′n(x, T, ε) = min{K(i) :
d(T jsi, T

jx) < ε for j < n}, one has:

K′n(x, T, 2ε) <
+ Kn(x, T, ε) + K(ε)

Kn(x, T, ε) <
+ K′n(x, T, ε/2) + K(n, ε)

Indeed, from ε and i0, . . . , in−1 some ideal point can be algorithmically found in the
constructive open set B(si0 , ε)∩ . . .∩ T−(n−1)B(sin−1 , ε), uniformly in i0, . . . , in−1.
Its n first iterates 2ε-shadow the orbit of x, which proves the first inequality. For
the second inequality, some i0, . . . , in−1 can be algorithmically found from n, ε,
and a point si whose n first iterates ε/2-shadow the orbit of x, taking any sij ∈
B(T jsi, ε/2).

Remark 4.5.2. Under the same assumptions, one could define K(Bn(si, ε)) to be
K(i, n, ε), and replace K(i) by K(Bn(si, ε)) in the definition of K′n(x, T, ε), without
changing the quantities K(x, T, ε) and K(x, T, ε). Indeed,

K(i) <
+

K(Bn(si, ε)) <
+

K(i) + K(n) + K(ε)

5. Equivalence of the two notions of orbit complexity for random
points

We now prove:

Theorem 5.0.1. Let T be an ergodic endomorphism of the computable probability
space (X, µ), where X is compact. Then for every Martin-Löf random point x,

K(x, T ) = Kµ(x, T ).

Proof of K(x, T ) ≤ Kµ(x, T ). Let ε > 0. Choose a computable partition ξ of diam-
eter < ε (this is why we require X to be compact). To every cell of ξ, associate an
ideal point which is inside (as ξ is computable, this can be done in a computable
way, but we actually do not need that). The translation of symbolic sequences in
sequences of ideal points through this finite dictionary is constructive, and trans-
forms the symbolic orbit of a point x into a sequence of ideal points which is ε-close
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to the orbit of x. So K(x, T, ε) ≤ Kµ(x, T |ξ). The inequality follows letting ε tend
to 0. �

To prove the other inequality, we recall some technical stuff. The self-delimiting
Kolmogorov complexity of natural numbers k ≥ 1 satisfies

K(k) <
+

f(k)

where f(x) = log x + 1 + 2 log(log x + 1) for all x ∈ R, x ≥ 1. f is a concave
increasing function and x 7→ xf(1/x) is an increasing function on ]0, 1] which tends
to 0 as x → 0.

We recall that for finite sequences of natural numbers (k1, . . . , kn), one has

K(k1, . . . , kn) <
+

K(k1) + . . . + K(kn)

as the shortest descriptions for k1, . . . , kn can be extracted from their concatena-
tion (this is one reason to use the self-delimiting complexity instead of the plain
complexity).

Lemma 5.0.1. Let Σ be a finite alphabet and n ∈ N. Let u, v ∈ Σn and 0 < α < 1/2
such that the density of the set of positions where u and v differ is less than α, that
is:

1
n

#{i ≤ n : ui 6= vi} < α < 1/2

Then
∣∣ 1
nK(u)− 1

nK(v)
∣∣ < αf(1/α)+ c

n where c is a constant independent of u, v
and n.

Proof. Let (i1, . . . , ip) be the ordered sequence of indices where u and v differ. By
hypothesis, p/n < α. Put k1 = i1 and kj = ij − ij−1 for 2 ≤ j ≤ p.

We now show that u can be recovered from v and roughly αf(1/α)n bits more.
Indeed u can be computed4 from (v, k1, . . . , kp), constructing the string which
coincides with v everywhere but at positions k1, k1 + k2, . . . , k1 + . . . + kp, so
K(u) <

+
K(v) + K(k1) + . . . + K(kp) <

+
K(v) + f(k1) + . . . + f(kp).

Now, as f is a concave increasing function, one has:

1
p

∑
j≤p

f(kj) ≤ f

1
p

∑
j≤p

kj

 = f

(
ip
p

)
≤ f

(
n

p

)
As a result,

1
n

K(u) ≤ 1
n

K(v) +
p

n
f

(
n

p

)
+

c

n

where c is some constant independent of u, v, n, p. As p/n < α < 1/2 and x 7→
xf(1/x) is increasing for x ≤ 1/2, one has:

1
n

K(u) ≤ 1
n

K(v) + αf(1/α) +
c

n

Switching u and v gives the result (c may be changed). �

We are now able to prove the other inequality.

4binary case? in general we will have a multiplicative constant which will not kill the result
(true ?)
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Proof of Kµ(x, T ) ≤ K(x, T ). Fix some computable partition ξ. We show that for
any β > 0 there is some ε > 0 such that for every Martin-Löf random point x,
Kµ(x, T |ξ) ≤ K(x, T, ε) + β. As K(x, T, ε) increases as ε → 0+ and β is arbitrary,
the inequality follows.

First take α < 1/2 such that αf(1/α) < β, and remark that

lim
ε→0+

µ
(
(∂ξ)ε

)
= µ(∂ξ) = 0

Hence there is some ε such that µ
(
(∂ξ)2ε

)
< α. From a sequence of ideal points

we will reconstruct the symbolic orbit of a random point with a density of errors
less than α. Lemma 5.0.1 will then allow to conclude.

We define an algorithm A(ε, i0, . . . , in−1) with ε ∈ Q>0 and i0, . . . , in−1 ∈ N
which outputs a word a0 . . . an−1 on the alphabet ξ. To compute aj , A semi-decides
in a dovetail picture:

• sij ∈ C for every C ∈ ξ,
• s ∈ C for every s ∈ B(sij

, ε) and every C ∈ ξ.

The first test which stops provides some C ∈ ξ: put aj = C.
Let x be a random point whose iterates are covered by ξ, and si0 , . . . , sin−1 be

ideal points which ε-shadow the first n iterates of x. We claim that A will halt on
(ε, i0, . . . , in−1). Indeed, as T jx belongs to some C ∈ ξ, C∩B(sij , ε) is a non-empty
open set and then contains at least one ideal point s, which will be eventually dealt
with.

We now compare the symbolic orbit of x with the symbolic sequence computed by
A. A discrepancy at rank j can appear only if T jx ∈ (∂ξ)2ε. Indeed, if T jx /∈ (∂ξ)2ε

then B(T jx, 2ε) ⊆ C where C is the cell T jx belongs to. As d(sij , T
jx) < ε,

B(sij , ε) ⊆ B(x, 2ε) ⊆ C, so the algorithm gives the right cell.
Now, as x is typical,

lim sup
n→∞

1
n

#{j < n : T jx ∈ (∂ξ)2ε} ≤ µ
(
(∂ξ)2ε

)
< α

so there is some n0 such that for all n ≥ n0, 1
n#{j < n : T jx ∈ (∂ξ)2ε} < α.

This implies that for all n ≥ n0 and ideal points si0 , . . . , sin−1 which ε-shadow the
first n iterates of x and with minimal complexity, the algorithm A(ε, i0, . . . , in−1)
produces a symbolic string u which differs from the symbolic orbit v of x of length
n with a density of errors < α. As K(u) <

+
K(ε) + Kn(x, T, ε) and αf(1/α) < β,

applying lemma 5.0.1 gives:

1
n

K(ξn(x)) =
1
n

K(v) ≤ 1
n

K(u) + αf(1/α) +
c

n

≤ 1
n

(Kn(x, T, ε) + K(ε) + c′) + β +
c

n

where c′ is independent of n. Taking the lim sup as n →∞ gives:

Kµ(x, T |ξ) ≤ K(x, T, ε) + β

�

Combining theorems 5.0.1 and 4.4.2, we obtain a version of Brudno’s theorem
(theorem 1) for Martin-Löf random points.
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Corollary 5.0.1. Let T be an ergodic endomorphism of the computable probability
space (X, µ), where X is compact. Then for every Martin-Löf random point x:

K(x, T ) = hµ(T )

6. Topological entropies

Bowen’s definition of topological entropy is reminiscent of the capacity (or box
counting dimension) of a totally bounded subset of a metric space. In order to
find relations with orbit complexity we will also use another characterization of
topological entropy, expressing it as a kind of Hausdorff dimension. We first present
Bowen’s definition.

In this section, X is a metric space and T : X → X a continuous map.

6.1. Entropy as a capacity. We recall the definition: for n ≥ 0, let us define the
distance dn(x, y) = max{d(T ix, T iy) : 0 ≤ i < n} and the Bowen ball Bn(x, ε) =
{y : dn(x, y) < ε}, which is open by continuity of T . Given a totally bounded set
Y ⊆ X and numbers n ≥ 0, ε > 0, let N(Y, n, ε) be the minimal cardinality of a
cover of Y by Bowen balls Bn(x, ε). A set of points E such that {Bn(x, ε) : x ∈ E}
is a cover of Y is also called an (n, ε)-spanning set of Y . One then defines:

h1(T, Y, ε) = lim sup
n→∞

log N(Y, n, ε)
n

which is non-decreasing as ε → 0, so the following limit exists:

h1(T, Y ) = lim
ε→0

h1(Y, T, ε).

When X is compact, the topological entropy of T is h(T ) = h1(T,X). It measures
the exponential growth-rate of the number of distinguishable orbits of the system.

Remark 6.1.1. The topological entropy can be defined using separated sets in-
stead of open covers: a subset A of X is (n, ε)-separated if for any distinct points
x, y ∈ A, dn(x, y) > ε. Let us define M(Y, n, ε) as the maximal cardinality of
an (n, ε)-separated subset of Y . It is easy to see that M(Y, n, 2ε) ≤ N(Y, n, ε) ≤
M(Y, n, ε), and hence h1(T, Y ) can be alternatively defined using M(Y, n, ε) in place
of N(Y, n, ε).

6.2. Entropy as a dimension. It is possible to define a topological entropy which
is an analog of Hausdorff dimension. His definition coincides with the classical one
in the compact case. Hausdorff dimension has stronger stability properties than
box dimension, which has important consequences, as we will see in what follows.
We refer the reader to [Pes98], [HK02] for more details.

Let X be a metric space and T : X → X a continuous map. The ε-size of E ⊆ X
is 2−s where

s = sup{n ≥ 0 : diam(T iE) ≤ ε for 0 ≤ i < n}.
It measures how long the orbits starting from E are ε-close. As ε decreases, the
ε-size of E is non-decreasing. The 2ε-size of a Bowen ball Bn(x, ε) is less than 2−n.

In a way that is reminiscent from the definition of Hausdorff measure, let us
define

ms
δ(Y, ε) = inf

G

{∑
U∈G

(ε-size(U))s

}
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where the infimum is taken over all countable covers G of Y by open sets of ε-
size < δ. This quantity is monotonically increasing as δ tends to 0, so the limit
ms(Y, ε) := limδ→0+ ms

δ(Y, ε) exists and is a supremum. There is a critical value
s0 such that ms(Y, ε) = ∞ for s < s0 and ms(Y, ε) = 0 for s > s0. Let us define
h2(T, Y, ε) as this critical value:

h2(T, Y, ε) := inf {s : ms(Y, ε) = 0} = sup {s : ms(Y, ε) = ∞} .

As less and less covers are allowed when ε → 0 (the ε-size of sets does not decrease),
the following limit exists

h2(T, Y ) := lim
ε→0+

h2(T, Y, ε)

and is a supremum. In [Pes98], it is proved that:

Theorem 6.2.1. When Y is a T -invariant compact set, h1(T, Y ) = h2(T, Y ).

In particular, if the space X is compact, then h(T ) = h1(T,X) = h2(T,X).

6.3. Orbit complexity vs entropy. Now we prove the main theorem of the sec-
tion:

Theorem 6.3.1 (Topological entropy vs orbit complexity). Let X be a compact
computable metric space, and T : X → X a computable map. Then

h(T ) = sup
x∈X

K(x, T ) = sup
x∈X

K(x, T ).

In order to prove this theorem, we define an effective version of the topological
entropy, which is strongly related to the complexity of orbits.

6.3.1. Effective entropy as an effective dimension. Before defining an effective ver-
sion, we give a simple characterization which will accommodate to effectivisation.

Definition 6.3.1. A null s-cover of Y ⊆ X is a set E ⊆ N3 such that:
(1)

∑
(i,n,p)∈E 2−sn < ∞,

(2) for each k, p ∈ N, the set {Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k} is a cover of Y .

The idea is simple: every null s-cover induces open covers of arbitrary small size
and arbitrary small weight. Remark that any null s-cover of Y is also a null s′-cover
for all s′ > s.

Lemma 6.3.1. h2(T, Y ) = inf{s : Y has a null s-cover}.

Proof. Suppose s > h2(T, Y ). We fix p, k ∈ N and put ε = 2−p and δ = 2−k.
As ms

δ(Y, ε) = 0, there is a cover (Uj,k,p)j of Y by open sets of ε-size δj,k,p < δ

with
∑

j δs
j,k,p < 2−(k+p). Let si be any ideal point in Uj,k,p. If δj,k,p > 0, then

δj,k,p = 2−n for some n. If δj,k,p = 0, take any n ≥ (j + k + p)/s. In both
cases, Uj,k,p is included in the Bowen ball Bn(si, ε). We define Ek,p as the set
of (i, n, p) obtained this way, and E =

⋃
k,p Ek,p. By construction, for each k, p,

{Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k} is a cover of Y . Moreover,
∑

(i,n,p)∈Ek,p
2−sn ≤∑

j δs
j,k,p +

∑
j 2−(j+k+p) ≤ 2−(k+p)+2, so

∑
(i,n,p)∈E 2−sn < ∞.

Conversely, if Y has a null s-cover E, take ε, δ > 0 and p, k such that ε > 2−p+1

and δ > 2−k. For all k′ ≥ k, the family {Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k′} is a cover
of Y by open sets of ε-size smaller than 2−n ≤ δ. Moreover,

∑
(i,n,p)∈E,n≥k′ 2

−sn

tends to 0 as k′ grows, so ms
δ(Y, ε) = 0. It follows that s ≥ h2(T, Y ). �
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By an effective null s-cover, we mean a null s-cover E which is a r.e. subset of
N3.

Definition 6.3.2. The effective topological entropy of T on Y is defined by

heff
2 (T, Y ) = inf{s : Y has an effective null s-cover}

As less null s-covers are allowed in the effective version, h2(T, Y ) ≤ heff
2 (T, Y ).

Of course, if Y ⊆ Y ′ then heff
2 (T, Y ) ≤ heff

2 (T, Y ′). We now prove:

Theorem 6.3.2 (Effective topological entropy vs lower orbit complexity). Let X
be an effective metric space and T : X → X a continuous map. For all Y ⊆ X,

heff
2 (T, Y ) = sup

x∈Y
K(x, T )

which implies in particular that heff
2 (T, {x}) = K(x, T ): the restriction of the

system to a single orbit may have positive effective topological entropy.
This kind of result has already been obtained for the Hausdorff dimension of

subsets of the Cantor space, proving that the effective dimension of a set A is the
supremum of the lower growth-rate of Kolmogorov complexity of sequences in A
(which corresponds to theorem 6.3.2 for sub-shifts). This remarkable property is a
counterpart of the countable stability property of Hausdorff dimension (dim Y =
supi dim Yi when

⋃
i Yi = Y ) (see [CH94], [May01], [Lut03], [Rei04], [Sta05]).

Theorem 6.3.2 is a direct consequence of the two following lemmas.

Lemma 6.3.2. Let α ≥ 0 and Yα = {x : K(x, T ) ≤ α}. One has heff
2 (T, Yα) ≤ α.

Proof. Let β > α be a rational number. We define the r.e. set E = {(i, n, p) :
K(i, n, p) < βn}. Let p ∈ N and ε = 2−p. If x ∈ Yα then K(x, T, ε) ≤ α < β so
for infinitely many n, there is some si such that x ∈ Bn(si, ε) and K(i, n, p) <
βn. So for all k, {Bn(si, 2−p) : (i, n, p) ∈ E,n ≥ k} covers Yα. Moreover,∑

(i,n,p)∈E 2−βn ≤
∑

(i,n,p)∈E 2−K(i,n,p) ≤ 1.
E is then an effective null β-cover of Yα, so heff

2 (T, Yα) ≤ β. And this is true for
every rational β > α. �

Lemma 6.3.3. Let Y ⊆ X. For all x ∈ Y , K(x, T ) ≤ heff
2 (T, Y ).

Proof. Let s > heff
2 (T, Y ): Y has an effective null s-cover E. As

∑
(i,n,p)∈E 2−sn <

∞, by the coding theorem K(i, n, p) ≤ sn + c for some constant x, which does not
depend on i, n, p. If x ∈ Y , then for each p, k, x is in a ball Bn(si, 2−p) for some
n ≥ k with (i, n, p) ∈ E. Then Kn(x, T, 2−p) ≤ sn + c for infinitely many n, so
K(x, T, 2−p) ≤ s. As this is true for all p, K(x, T ) ≤ s. As this is true for all
s > heff

2 (T, Y ), we can conclude. �

Proof of theorem 6.3.2. By lemma 6.3.3, α := supx∈Y K(x, T ) ≤ heff
2 (T, Y ). Now,

as Y ⊆ Yα, heff
2 (T, Y ) ≤ heff

2 (T, Yα) ≤ α by lemma 6.3.2. �

The definition of an effective null α-cover involves a summable computable se-
quence. The universality of the sequence 2−K(i) among summable lower semi-
computable sequences is at the core of the proof of the preceding theorem, which
states that there is a universal effective null α-cover, for every α ≥ 0. In other
words, there is a maximal set of effective topological entropy ≤ α, and this set is
Yα = {x ∈ X : K(x, T ) ≤ α}.
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The definition of the topological entropy as a capacity could be also made effec-
tive, restricting to effective covers. Classical capacity does not share with Hausdorff
dimension the countable stability. For the same reason, its effective version is not
related with the orbit complexity as strongly as the effective topological entropy
is. Nevertheless, a weaker relation holds, which is sufficient for our purpose: the
upper complexity of orbits is bounded by the effective capacity. We do not develop
this and only state the needed property (which implicitly uses the fact that the
effective capacity coincides with the classical capacity for a compact computable
metric space):

Lemma 6.3.4. Let X be a compact computable metric space. For all x ∈ X,
K(x, T ) ≤ h1(T,X).

Proof. We first construct a r.e. set E ⊆ N3 such that for each n, p, {si : (i, n, p) ∈
E} is a (n, 2−p)-spanning set and a (n, 2−p−2)-separated set. Let us fix n and p
and enumerate En,p = {i : (i, n, p) ∈ E}, in a uniform way. The algorithm starts
with S = ∅ and i = 0. At step i it analyzes si and decides to add it to S or not,
and goes to step i + 1. En,p is the set of points which are eventually added to S.

Step i: for each ideal point s ∈ S, test in parallel dn(si, s) < 2−p−1 and
dn(si, s) > 2−p−2: at least one of them must stop. If the first one stops
first, reject si and go to Step i+1. If the second one stops first, go on with
the other points s ∈ S: if all S has been considered, then add si to S and
go to Step i + 1.

By construction, the set of selected ideal points forms a (n, 2−p−2)-separated set.
If there is x ∈ X which is at distance at least 2−p from every selected point, then let
si be an ideal point si with dn(x, si) < 2−p−1: si is at distance at least 2−p−1 from
every selected point, so at step i it must have been selected, as the first test could
not stop. This is a contradiction: the selected points form a (n, 2−p)-spanning set.

From the properties of En,p it follows that N(X, n, 2−p) ≤ |En,p| ≤ M(X, n, 2−p−2),
and then

sup
p

(
lim sup

1
n

log |En,p|
)

= h1(T,X)

If β > h1(T,X) is a rational number, then for each p, there is k ∈ N such that
log |En,p| < βn for all n ≥ k.

Now, for si ∈ En,p, K(i) <
+

log |En,p| + 2 log log |En,p| + K(n, p) by proposi-
tion 2.6.1. Take x ∈ X: x is in some Bn(si, 2−p) for each n, so K(x, T, 2−p) ≤
lim supn

1
n log |En,p| ≤ β as log |En,p| < βn for all n ≥ k. As this is true for all p

and all β > h1(T,X), K(x, T ) ≤ h1(T,X) and this for all x ∈ X. �

We are now able to prove theorem 6.3.1. Combining the several results estab-
lished above:

h1(T,X) = h2(T,X) ≤ heff
2 (T,X) = supx∈X K(x, T ) ≤ supx∈X K(x, T ) ≤ h1(T,X)

(theorem 6.2.1) (theorem 6.3.2) (lemma 6.3.4)

and the statement is proved.
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