
Noise vs computational intractability in dynamics

Mark Braverman
Computer Science Department

Princeton University

Alexander Grigo
Mathematics Department

University of Toronto
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Abstract

Computation plays a key role in predicting and analyzing natural
phenomena. There are two fundamental barriers to our ability to com-
putationally understand the long-term behavior of a dynamical system
that describes a natural process. The first one is unaccounted-for er-
rors, which may make the system unpredictable beyond a very limited
time horizon. This is especially true for chaotic systems, where a small
change in the initial conditions may cause a dramatic shift in the trajec-
tories. The second one is Turing-completeness. By the undecidability
of the Halting Problem, the long-term prospects of a system that can
simulate a Turing Machine cannot be determined computationally.

We investigate the interplay between these two forces – unaccounted-
for errors and Turing-completeness. We show that the introduction of
even a small amount of noise into a dynamical system is sufficient to
“destroy” Turing-completeness, and to make the system’s long-term
behavior computationally predictable. On a more technical level, we
deal with long-term statistical properties of dynamical systems, as de-
scribed by invariant measures. We show that while there are simple dy-
namical systems for which the invariant measures are non-computable,
perturbing such systems makes the invariant measures efficiently com-
putable. Thus, noise that makes the short term behavior of the system
harder to predict, may make its long term statistical behavior computa-
tionally tractable. We also obtain some insight into the computational
complexity of predicting systems affected by random noise.

∗MB is supported by an NSERC Discovery Grant, CR is supported by a FONDECYT
Grant.
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1 Introduction

1.1 Motivation and statement of the results

In this paper we investigate (non)-computability phenomena surrounding
physical systems. The Church-Turing thesis asserts that any computation
that can be carried out in finite time by a physical device, can be carried
out by a Turing Machine. The thesis can be paraphrased in the following
way: provided all the initial conditions with arbitrarily good precision, and
random bits when necessary, the Turing Machine can simulate the physical
system S over any fixed period of time [0, T ] for T <∞.

In reality, however, we are often interested in more than just simulating
the system for a fixed period of time. In many situations, one would like
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to understand the long term behavior properties of S when T→∞. Some of
the important properties that fall into this category include:

1. Reachability problems: given an initial state x0 does the system S
ever enter a state x or a set of states X ?

2. Asymptotic topological properties: given an initial state x0, which
regions of the state space are visited infinitely often by the system?

3. Asymptotic statistical properties: given an initial state x0, does the
system converge to a “steady state” distribution, and can this distri-
bution be computed? Does the distribution depend on the initial state
x0?

The first type of questions is studied in Control Theory [BP07] and
also in Automated Verification [CGP99]. The third type of questions is
commonly addressed by Ergodic Theory [Wal82, Pet83]. These questions in
a variety of contexts are also studied by the mathematical field of Dynamical
Systems [Mañ87]. For example, one of the celebrated achievements of the
Kolmogorov-Arnold-Moser (KAM) theory and its extensions [Mos01] is in
providing the understanding of question (1) above for systems of planets
such as the solar system.

An important challenge one needs to address in formally analyzing the
computational questions surrounding dynamical systems is the fact that
some of the variables involved, such as the underlying states of S may
be continuous rather than discrete. These are very important formalities,
which can be addressed e.g. within the framework of computable analysis
[Wei00]. Other works dealing with “continuous” models of computation in-
clude [Ko91, PER89, BCSS98]. Most results, both positive and negative,
that are significant in practice, usually hold true for any reasonable model
of continuous computation.

Numerous results on computational properties of dynamical systems
have been obtained. In general, while bounded-time simulations are usually
possible, the computational outlook for the “infinite” time horizon prob-
lems is grim: the long-term behavior features of many of the interesting sys-
tems is non-computable. Notable examples include piece-wise linear maps
[Moo90, AMP95], polynomial maps on the complex plane [BY06, BY07] and
cellular automata [Wol02, KL09]. The proofs of these negative results, while
sometimes technically involved, usually follow the same outline: (1) show
that the system S is “rich enough” to simulate any Turing Machine M ; (2)
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show that solving the Halting Problem (or some other non-recursive prob-
lem) on M can be reduced to computing the feature F in question. These
proofs can be summarized in the following:

Thesis 1. If the physical system is rich enough, it can simulate universal
computation and therefore many of the system’s long-term features are non-
computable.

This means that while analytic methods can prove some long-term prop-
erties of some dynamical systems, for “rich enough” systems, one cannot
hope to have a general closed-form analytic algorithm, i.e. one that is not
based on simulations, that computes the properties of its long-term behav-
ior. This fundamental phenomenon is qualitatively different from chaotic
behavior, or the “butterfly effect”, which is often cited as the reason that
predicting complex dynamical systems is hard beyond a very short time
horizon; e.g. the weather being hard to predict a few days in advance.

A chaotic behavior means that the system is extremely sensitive to the
initial conditions, thus someone with only approximate knowledge of the
initial state can predict the system’s state only within a relatively short
time horizon. This does not at all preclude one from being able to compute
practically relevant statistical properties about the system. Returning to
the weather example, the forecasters may be unable to tell us whether it
will rain this Wednesday, but they can give a fairly accurate distribution of
temperatures on September 1st next year!

On the other hand, the situation with systems as in Thesis 1 is much
worse. If the system is rich enough to simulate a Turing Machine it will
exhibit “Turing Chaos”: even its statistical properties will become non-
computable, not due to precision problems with the initial conditions but
due to the inherent computational hardness of the system. This even led
some researchers to suggest [Wol02] that simulation is the only way to an-
alyze the dynamical systems that are rich enough to simulate a universal
Turing Machine.

Our goal is to better understand under which scenarios computability-
theoretic barriers, rather than incomplete understanding of the system or
its initial condition, preclude us from analyzing the system’s long term be-
havior. A notable feature, shared by several prior works on computational
intractability in dynamical systems, such as [Moo90, BY06, AB01], is that
the non-computability phenomenon is not robust: the non-computability
disappears once one introduces even a small amount of noise into the sys-
tem. Thus, if one believes that natural systems are inherently noisy, one
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would not be able to observe such non-computability phenomena in nature.
In fact, we conjecture:

Conjecture 2. In finite-dimensional systems non-computable phenomena
are not robust.

Thus, we conjecture that noise actually makes long-term features of the
system easier to predict. A notable example of a robust physical system
that is Turing complete is the RAM computer. Note, however, that to
implement a Turing Machine on a RAM machine one would need a machine
with unlimited storage, thus such a computer, while feasible if we assume
unlimited physical space, would be an infinite-dimensional system. We do
not know of a way to implement a Turing Machine robustly using a finite-
dimensional dynamical system.

In this paper we will focus on discrete-time dynamical systems over con-
tinuous spaces as a model for physical processes. Namely, there is a set
X representing all the possible states the system S can ever be in, and a
function f : X → X, representing the evolution of the system in one unit of
time. In other words, if at time 0 the system is in state x, then at time t it
will be in state f t(x) = (f ◦ f ◦ · · · ◦ f)(x) (t times).

We are interested in computing the asymptotic statistical properties of
S as t→∞. These properties are described by the invariant measures of
the system – the possible statistical behaviors of f t(x) once the systems has
converged to a “steady state” distribution. While in general there might be
infinitely (even uncountably) many invariant measures, only a small portion
of them are physically relevant.1 A typical picture is the following: the phase
space can be divided in regions exhibiting qualitatively different limiting
behaviors. Within each region Ri, for almost every initial condition x ∈ Ri,
the distribution of f t(x) will converge to a “steady state” distribution µi on
X, supported on the region. We are interested in whether these distributions
can be computed:

Problem 3. Assume that the system S has reached some stationary equi-
librium distribution µ. What is the probability µ(A) of observing a certain
event A?

In some sense this is the most basic question one can ask about the long-
term behavior of the system S. Formally, the above question corresponds

1The problem of characterizing these physical measures is an important challenge in
Ergodic Theory.
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to the computability of the ergodic invariant measures of the system2 (see
Section 2). A negative answer to Problem 3 was given in [GHR11] where the
authors demonstrate the existence of computable one-dimensional systems
for which every invariant measure is non-computable. This is consistent
with Thesis 1 above.

In the present paper we study Problem 3 in the presence of small random
perturbations: each iteration f of the system S is affected by (small) random
noise. Informally, in the perturbed system Sε the state of the system jumps
from x to f(x) and then disperses randomly around f(x) with distribution
pεf(x)(·). The parameter ε controls the “magnitude” of the noise, so that

pεf(x)(·)→ f(x) as ε→ 0.
Our first result demonstrates that the non-computability phenomena are

broken by the noise. More precisely, we show:

Theorem A. Let S be a computable system over a compact subset M of Rd.
Assume pεf(x) is uniform on the ε-ball around f(x). Then, for almost every
ε > 0, the ergodic measures of the perturbed system Sε are all computable.

The precise definition of computability of measures is given in Section
2. The assumption of uniformity on the noise is not essential, and it can
be relaxed to (computable) absolute continuity. Theorem A follows from
general considerations on the computability and compactness of the relevant
spaces. It shows that the non-computability of invariant measures is not
robust, which is consistent with the general Conjecture 2.

In addition to establishing the result on the computability of invariant
measures in noisy systems, we obtain upper bounds on the complexity of
computing these measures. In studying the complexity of computing the
invariant measures, we restrict ourself to the case when the system has a
unique invariant measure – such systems are said to be “uniquely ergodic”.

Theorem B. Suppose the perturbed system Sε is uniquely ergodic and the
function f is polynomial-time computable. Then there exists an algorithm
A that computes µ with precision α in time OS,ε(poly( 1

α)).

Note that the upper bound is exponential in the number of precision bits
we are trying to achieve. The algorithm in Theorem B can be implemented
in a space-efficient way, using only poly(log(1/α)) amount of space. If the
noise operator has a nice analytical description, and under a mild additional
assumption on f , the complexity can be improved when computing at pre-
cision below the level of the noise. For example, one could take pεf(x)(·) to

2An ergodic measure is an invariant measure that cannot be decomposed into simpler
invariant measures.
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be a Gaussian around f(x). This kind of perturbation forces the system
to have a unique invariant measure, while the analytical description of the
Gaussian noise can be exploited to perform a more efficient computation.
We need an extra assumption that in addition to being able to compute f
in polynomial time, we can also integrate its convolution with polynomial
functions in polynomial time.

Theorem C. Suppose the noise pεf(x)(·) is Gaussian, and f is polynomial-
time integrable in the above sense. Then the computation of µ at precision
δ < O(ε) requires time OS,ε(poly(log 1

δ )).

As with Theorem A, we do not really need the noise to be Gaussian:
any noise function with a uniformly analytic description would suffice. For
the sake of simplicity, we will prove Theorem C only in the one dimensional
case. The result can be easily extended to the multi-dimensional case.

Informally, Theorem C says that the behavior of the system at scales
below the noise level is governed by the “micro”-analytic structure of the
noise that is efficiently predictable, rather than by the “macro”-dynamic
structure of S that can be computationally intractable to predict. Theo-
rem C suggests that a quantitative version of Conjecture 2 can be made: if
the noise function behaves “nicely” below some precision level ε, properties
of the system do not only become computable with high probability, but the
computation can be carried out within error δ < ε in time Oε(poly(log 1

δ )).
We will discuss this further below.

1.2 Comparison with previous work

It has been previously observed that the introduction of noise may destroy
non-computability in several settings [AB01, BY08]. There are two concep-
tual differences that distinguish our work from previous works. Firstly, we
consider the statistical – rather than topological – long-term behavior of the
system. We still want to be able to predict the trajectory of the system in
the long run, but in a statistical sense. Secondly, we also address the compu-
tational complexity of predicting these statistical properties. In particular,
Theorem C states that if the noise itself is not a source of additional compu-
tational complexity, then the “computationally simple” behavior takes over,
and the system becomes polynomial-time computable below the noise level.

1.3 Discussion

Our quantitative results (Theorems B and C) shed light on what we think
is a more general phenomenon. A given dynamical system, even if it is
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Turing-complete, loses its “Turing completeness” once noise is introduced.
How much computational power does it retain? To give a lower bound, one
would have to show that even in the presence of noise the system is still
capable of simulating a Turing Machine subject to some restrictions on its
resources (e.g. PSPACE Turing Machines). To give an upper bound, one
would have to give a generic algorithm for the noisy system, such as the
ones given by Theorems B and C. For the systems we consider, informally,
Theorems B and C give (when the system is “nice”) a PSPACE(log 1/ε)
upper bound on the complexity of computing the invariant measure. It is
also not hard to see that PSPACE(log 1/ε) can be reduced to the evaluation
of an invariant measure of an ε-noisy system of the type we consider. Thus
the computational power of these systems is PSPACE(log 1/ε).

This raises the general question on the computational power of noisy
systems. In light of the above discussion, it is reasonable to conjecture that
the computational power is given by PSPACE(M), where M is the amount
of “memory” the system has. In other words, there are ∼ 2M states that are
robustly distinguishable in the presence of noise. This intuition, however,
is hard to formalize for general systems, and further study is needed before
such a quantitative assertion can be formulated.

2 Preliminaries

2.1 Discrete-time dynamical systems

We now attempt to give a brief description of some elementary ergodic the-
ory in discrete time dynamical systems. For a complete treatment see for
instance [Wal82, Pet83, Mañ87]. A dynamical system consists of a metric
space X representing all the possible states the system can ever be, and
and a map f : X → X representing the dynamics. In principle, such a
model is deterministic in the sense that complete knowledge of the state of
the system, say x ∈ X, at some initial time, entirely determines the future
trajectory of the system: x, f(x), f(f(x)), .... Despite of this, in many in-
teresting situations it is impossible to predict any particular feature about
any specific trajectory. This is the consequence of the famous sensitivity
to initial conditions (chaotic behavior) and the impossibility to make mea-
surements with infinite precision (approximation): two initial conditions
which are very close to each other (so they are indistinguishable for the
physical measurement) may diverge in time, rendering the true evolution
unpredictable.

Instead, one studies the limiting or asymptotic behavior of the system.
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A common situation is the following: the phase space can be divided in
regions exhibiting qualitatively different limiting behaviors. Within each
region, all the initial conditions give rise to a trajectory which approaches
an “attractor”, on which the limiting dynamics take place (and that can be
quite complicated). Thus, different initial condition within the same region
may lead in long term to quite different particular behaviors, but identical in
a qualitative sense. Any probability distribution supported in the region will
also evolve in time, approaching a limiting invariant distribution, supported
in the attractor, and which describes in statistical terms the dynamics of
the equilibrium situation. Formally, a probability measure µ is invariant
if the probabilities of events do not change in time: µ(f−1A) = µ(A). An
invariant measure µ is ergodic if it cannot be decomposed: f−1(A) = A
implies µ(A) = 1 or µ(A) = 0.

We now describe random perturbations of dynamical systems. A stan-
dard reference for this material is [Kif88].

2.1.1 Random perturbations

Let f be a dynamical system on a space M on which Lebesgue measure
can be defined (say, a Riemannian manifold). Denote by P (M) the set of
all Borel probability measures over M , with the weak convergence topology.
We consider a family {Qx}x∈M ∈ P (M). By a random perturbation of f
we will mean a Markov Chain Xt, t = 0, 1, 2, ... with transition probabilities
P (A|x) = P{Xt+1 ∈ A : Xt = x} = Qf(x)(A) defined for any x ∈ M , Borel
set A ⊂ M and n ∈ N. We will denote the randomly perturbed dynamics
P (·|x) = Qf(x) by Sε. Given µ ∈ P (M), the push forward under Sε is
defined by (S∗µ)(A) =

∫
M P (A|x) dµ.

Definition 4. A probability measure µ on M is called an invariant mea-
sure of the random perturbation Sε of f if S∗µ = µ.

We will be interested in small random perturbations. More precisely, we
will consider the following choices for Qεx:

1. In Theorems A and B we choose Qεx to be uniform on the ε-ball around
x. That is, Qεx = vol |B(x,ε) is Lebesgue measure restricted to the ε-ball
about x.

2. In Theorem C we use an everywhere supported density for Qεx =
Kε(x), which is uniformly analytic. In particular, the Gaussian density
of variance ε centered at x satisfies these conditions.
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2.2 Computability of probability measures

Let us first recall some basic definitions and results established in [Gác05,
HR09]. We work on the well-studied computable metric spaces (see [EH98,
YMT99, Wei00, Hem02, BP03]).

Definition 5. A computable metric space is a triple (X, d, S) where:

1. (X, d) is a separable metric space,

2. S = {si : i ∈ N} is a countable dense subset of X with a fixed num-
bering,

3. d(si, sj) are uniformly computable real numbers.

Elements in the dense set S are called simple or ideal points. Algorithms
can manipulate ideal points via their indexes, and thus the whole space
can be reached by algorithmic means. Examples of spaces having natural
computable metric structures are Euclidean spaces, the space of continuous
functions on [0, 1] and Lp spaces w.r.t. Lebesgue measure on Euclidean
spaces.

Definition 6. A point x ∈ X is said to be computable if there is a
computable function ϕ : N→ S such that

d(ϕ(n), x) ≤ 2−n for all n ∈ N.

Such a function ϕ will be called a name of x.

If x ∈ X and r > 0, the metric ball B(x, r) is defined as {y ∈ X :
d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈ Q, q > 0} of simple balls,
which is a basis of the topology, has a canonical numbering B = {Bi : i ∈ N}.
An effective open set is an open set U such that there is a r.e. (recursively
enumerable) set E ⊆ N with U =

⋃
i∈E Bi. If X ′ is another computable

metric space, a function f : X → X ′ is computable if the sets f−1(B′i) are
uniformly effectively open. Note that, by definition, a computable function
must be continuous.

As an example, consider the space [0, 1]. The collection of simple balls
over [0, 1] can be taken to be the intervals with dyadic rational endpoints,
i.e., rational numbers with finite binary representation. Let D denote the
set of dyadic rational numbers. Computability of functions over [0, 1], as
defined in the paragraph above, can be characterized in terms of oracle
Turing Machines as follows:
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Proposition 7. A function f : [0, 1] → [0, 1] is computable if and only if
there is an oracle Turing Machine Mφ such that for any x ∈ [0, 1], any name
ϕ of x, and any n ∈ N, on input n and oracle ϕ, will output a dyadic d ∈ D
such that |f(x)− d| ≤ 2−n.

Poly-time computable functions over [0, 1] are defined as follows (see
[Ko91]).

Definition 8. f : [0, 1]→ [0, 1] is polynomial time computable if there
is a machine M as in the proposition above which, in addition, always halts
in less than p(n) steps, for some polynomial p, regardless of what the oracle
function is.

We now introduce a very general notion of computability of probability
measures. When M is a computable metric space, the space P (M) of proba-
bility measures over M inherits the computable structure. The set of simple
measures SP (M) can be taken to be finite rational convex combinations of
point masses supported on ideal points of M . When M is compact (which
will be our case), the weak topology is compatible with the Wasserstein-
Kantorovich distance:

W1(µ1, µ2) = sup
ϕ∈1-Lip(M)

∣∣∣∣∫ ϕdµ1 −
∫
ϕdµ2

∣∣∣∣ ,
where 1-Lip(M) denotes the space of functions with Lipschitz constant less
than 1. The triple P (M,SP (M),W1) is a computable metric space. See for
instance [HR09]. This automatically gives the following notion:

Definition 9. A probability measure µ is computable if it is a computable
point of P (M).

The definition above makes sense for any probability measure, and we
will use it in Theorems A and B. One shows that for computable measures,
the integral of computable functions is again computable (see [HR09]). Sim-
ple examples of computable measures are Lebesgue measure, as well as any
absolutely continuous measure with a computable density function.

However, computable absolutely continuous (w.r.t. Lebesgue) measures
do not necessarily have computable density functions (simply because they
may not be continuous).

Definition 10. A probability measure µ over [0, 1] is polynomial time
computable if its cumulative distribution function F (x) = µ([0, x]) is poly-
nomial time computable.
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Polynomial time computability of the density function of a measure µ
does not imply poly-time computability of µ (unless P = #P, see [Ko91]).
However, the situation improves under analyticity assumptions. In particu-
lar, we will rely on the following result.

Proposition 11 ([KF88]). Assume f is analytic and polynomial time com-
putable on [0, 1]. Then

(i) the Taylor coefficients of f form a uniformly poly-time computable se-
quence of real numbers and,

(ii) the measure µ with density f is polynomial time computable.

In the proof of Theorem C, we actually show that the invariant measure
π has a density function which is analytic and polynomial time computable.

3 Proof of Theorem A

3.1 Outline of the proof

First observe that since M is compact and the support of any ergodic mea-
sure of Sε must contain an ε-ball, there can be only finitely many ergodic
measures µ1, µ2, ..., µN(ε). The algorithm to compute them first finds all re-
gions that separate the dynamics into disjoint parts. For this we show that
for almost every ε, every ergodic measure has a basin of attraction such that
the support of the measure is well contained in the basin. More precisely,
we show:

Theorem 12. For all but countably many ε > 0, there exists open sets
A1, ..., AN(ε) such that for all i = 1, ..., N(ε):

(i) supp(µi) ⊂ Ai and,

(ii) for every x ∈ Ai, µx = µi, where µx is the limiting distribution of Sε
starting at x.

This is used to construct an algorithm to find these regions, which is
explained in the Section 3.2, and the proof that it terminates (Theorem 25)
follows from Theorem 12.

The second part of the algorithm, uses compactness of the space of mea-
sures to find the ergodic measures within each region, by ruling out the ones
which are not invariant. Here we use the fact that if a system is uniquely
ergodic, then its invariant measure is computable (see [GHR11]). This result
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is applied to the system Sε restricted to each of the regions (provided by the
algorithm described in Section 3.2) where it is uniquely ergodic.

The algorithm thus obtained has the advantage of being simple and com-
pletely general. On the other hand, it is not well suited for a complexity
analysis, because the search procedure is computationally extremely waste-
ful.

3.2 The Algorithm

Proof of Theorem 12. For ε > 0, let E(ε) be the set of ergodic measures of
Sε. By compactness, E(ε) = {µ1, . . . , µN(ε)} is finite. For a set A, we denote

by Bδ(A) = {x ∈ M : d(x,A) < δ} the δ-neighborhood of A, and by A its
closure. For simplicity, we assume M to be a connected manifold with no
boundary so that, in particular

Bδ(A) = {x ∈M : d(x,A) ≤ δ} = Bδ(A).

It is clear that the support of any ergodic measure for Sε contains the
support of at least one ergodic measure for Sε−h, for any h > 0. Therefore,
the function N : ε 7→ N(ε) is monotonic in ε and hence it can have at most
countably many discontinuities.

Suppose N(·) is constant on an interval containing ε and ε′ > ε. Then,
for any i we have

f(supp(µi(ε))) ⊂ f(supp(µi(ε
′)))

and therefore, since ε < ε′:

Bε(f(supp(µi(ε)))) ⊂ int(Bε′(f(supp(µi(ε
′))))).

Combining this observation with the following Lemma 13 shows that, if
N(·) is continuous at ε, then for any ε′ > ε sufficiently close to ε (such that
N(ε) = N(ε′)), it holds

supp(µi(ε)) ⊂ int(supp(µi(ε
′))).

The setsAi in the theorem can then be taken to beAi = int(supp(µi(ε
′))),

which finishes the proof of Theorem 12.

Lemma 13. For every i = 1, .., N(ε)

Bε(f(supp(µi(ε)))) = supp(µi(ε)).
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Proof. For δ > 0 we have that:

µ(B(x, δ)) =

∫
M
p(y,B(x, δ)) dµ(y) =

∫
supp(µ)

vol(B(x, δ)|B(f(y), ε)) dµ(y).

If d(x, f(supp(µ))) > ε then clearly there is a δ > 0 such that µ(B(x, δ)) =
0 so that

supp(µi(ε)) ⊆ Bε(f(supp(µi(ε)))).

On the other hand, if d(x, f(y)) < ε for some y ∈ supp(µ), then for any δ
small enough we have

B(x, δ) ⊂ B(y′, ε)

for any y′ ∈ B(f(y), δ). It follows that vol(B(x, δ)|B(f(s), ε)) = vol(Bδ)
vol(Bε)

> 0

for all s ∈ f−1(B(f(y), δ)) and therefore∫
supp(µ)

vol(B(x, δ)|B(f(y), ε)) dµ(y) >
vol(Bδ)

vol(Bε)
µ(f−1(B(f(y), δ))) > 0

so that
Bε(f(supp(µi(ε)))) ⊂ supp(µi(ε)).

Since supp(µ) is closed, the claim follows.

We now set the language we will use in describing the algorithm com-
puting the ergodic measures. Fix ε > 0. Let ξ = {a1, ..., a`} be a finite open
cover of M .

Definition 14. For any open set A ⊂M and any δ > 0 let

ξin
δ (A) = {a ∈ ξ : a ⊂

⋂
x∈A

Bδ(x)}

denote the δ-inner neighborhood of A in ξ.
Define the δ-inner iteration fin : 2ξ → 2ξ by:

1. fin(∅) = ∅

2. For all a ∈ ξ, fin(a) = ξin
δ (f(a)),

3. fin({a1, ..., am}) =
⋃
i≤m fin(ai).
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Definition 15. For any open set A ⊂M and any δ > 0 let

ξout
δ (A) = {a ∈ ξ : a ∩Bδ(A) 6= ∅}

denote the δ-outer neighborhood of A in ξ.
Define the δ-outer iteration fout : 2ξ → 2ξ by:

1. fout(∅) = ∅

2. For all a ∈ ξ, fout(a) = ξout
δ (f(a)),

3. fout({a1, ..., am}) =
⋃
i≤m fout(ai).

Definition 16. An atom a ∈ ξ is inner-periodic if

a ∈ f |ξ|in (a).

In the following, we chose δ ≤ ε and let ξ be a covering such that for a
small interval around δ and all a ∈ ξ, fin(a) is constant and non empty.

Definition 17. The inner orbit of an atom a ∈ ξ is defined to be

Oin{a} =
⋃
k≥0

fkin{a}.

Definition 18. A collection of atoms of ξ is called inner-irreducible if all
of them have the same inner orbit.

Remark 19. If a collection of atoms is inner-irreducible, then everyone of
these atoms is inner-periodic.

Proposition 20. The inner map fin and outer map fout are computable.

Proof. By the choice of δ, the condition a′ ⊂
⋂
x∈aBδ(f(x)) can be decided,

which implies computability of fin. Computability of fout follows by a similar
argument.

Proposition 21. For every a ∈ ξ, we can decide whether or not a is inner-
periodic.

Proof. Because fin is computable.

The Algorithm. The description of the algorithm to find the basins of
attraction of the invariant measures µi is as follows. First chose some cover
ξ as above. Then:
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1. Find all the inner-periodic atoms of ξ, and call their collection P .

2. (Inner Reduction) Here we reduce P to a maximal subset ξirr which
contains only inner-periodic pieces whose inner-orbits are inner-irreducible
and disjoint.

First compute the inner orbits {O1, ..., O|P |}.

Lemma 22. If Oi ∩Oj 6= ∅ then there is kij such that

Okij ⊂ Oi ∩Oj .

Proof. Let a ∈ Oi ∩ Oj . Since Oin(a) is finite, it must contain an
inner-periodic element.

To compute ξirr start by setting ξirr = P . Then, as long as there are
ai, aj ∈ ξirr, i 6= j such that Oi ∩Oj 6= ∅, set

ξirr := (ξirr − {ai, aj}) ∪ {akij}.

Lemma 23. ξirr contains only inner periodic pieces whose inner-orbits
are inner-irreducible and disjoint. By construction, the cardinality of
ξirr is maximal.

Proof. At each step the cardinality of ξirr is reduced by 1, so that the
procedure stops after at most |P | − 1 steps. It is evident that the re-
maining atoms have disjoint inner-orbits. Let a ∈ ξirr and ai ∈ Oin(a).
If ai is inner-periodic, then it was eliminated during the procedure
when compared against a, which means that a ∈ Oin(ai). If ai was
not inner-periodic, then there is some inner-periodic element aj in
Oin(ai) which was eliminated when compared to a, which implies that
a ∈ Oin(aj) ⊂ Oin(ai). This shows that Oin(a) is inner-irreducible.
Let a∗ /∈ ξirr. Then a∗ was eliminated in the procedure, which means
that Oin(a∗) can not be disjoint from ξirr. The cardinality of ξirr is
therefore maximal.

Remark 24. The support of any ergodic measure contains the inner
orbit of at least one element in ξirr.
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3. If for all ai, aj in ξirr, Oout(ai) ∩Oout(aj) = ∅ then stop and return ξirr,
otherwise refine ξ and go to (1).

Theorem 25. For all but countably many ε, the above algorithm terminates
and returns ξirr. Moreover, if Oi denotes the inner orbit of the i-th element
of ξirr, then Sε has exactly |ξirr|-many ergodic measures, and the support of
each of them contains exactly one of the Oi.

Proof. By Theorem 12 we can assume that ε is such that there exist disjoint
open sets A1, ..., AN(ε) such that for all i = 1, ..., N(ε):

(i) supp(µi) ⊂ Ai and,

(ii) for every x ∈ Ai, µx = µi, where µx is the limiting measure starting
at x.

Therefore, each element of the list ξirr constructed in step 2, has an inner-
orbit contained in the support of some ergodic measure. The algorithm
terminates because of two facts: (i) for a cover ξ fine enough, the inner
orbits of two different elements of the list ξirr must be contained in the
support of two different ergodic measures. (ii) For a cover finer than the
minimal gap between the supports and their basins, it is guarantee that the
outer orbits will be also disjoint.

Proof of Theorem A. Use the above algorithm to construct the outer irre-
ducible pieces. Each of them is a computable forward invariant set. The
perturbed system Sε restricted to each of these pieces is computable and
uniquely ergodic. The associated invariant measures are therefore com-
putable ([GHR11]).
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4 Proof of Theorem B

4.1 Outline of the Proof

The idea of the algorithm is to exploit the mixing properties of the transition
operator P of the perturbed system Sε. Since P may not have a spectral
gap, we construct a related transition operator P that has the same invariant
measure as P while having a a spectral gap (see Lemma 28 and Proposition
29).

The algorithm then computes a finite matrix approximation Q of P with
the following properties: (i) Q has a simple real eigenvalue near 1, (ii) the
corresponding eigenvector ψ can be chosen to have only non negative entries
and (iii) the density associated to ψ (see below) is L1-close to the stationary
distribution of P.

To construct the main algorithm A, to each precision parameter α we
associate a partition ζ = ζ(α) of the space M into regular pieces of size
δ = 1/O(poly( 1

α))1/d, where d denotes the dimension of M . On input α the
algorithm A outputs a list {wa}a∈ζ of O(poly( 1

α))-dyadic numbers, which is
to be interpreted as the piece-wise constant function

A(α) =
∑
a∈ζ

wa1 {x ∈ a} .

For any atom ai ∈ ζ, let ci denote its center point. The algorithm works
as follows:

1. Compute f(ci) with some precision ε, that we will specify later: fε(ci)
(a log(1/ε)-dyadic number)

2. For every aj 6= ai do:

• Compute d(fε(cj), cj) with precision ε: dε(fε(ci), cj) (also a log(1/ε)-
dyadic number).

• set pij to be an ε-approximation of vol(a)
vol(Bε)

iff

dε(fε(ci), cj) < ε−m(δ)− 2ε− δ

where m(δ) (a polynomial in δ) denotes the uniform modulus of
continuity of f (see Equation 5). Otherwise put pij = 0 (one
can assume all the previous numbers to be rational, and then the
inequality can be decided). Clearly, the computation of each pij
can be achieved in polynomial time in log(1/ε).
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3. Compute the unique normalize Perron-Frobenious eigenvector ψ of the
|ζ| × |ζ| matrix (pi,j), and output the list {wa} where wa = ψa.

The key point is that the matrix (pi,j) can be seen as a representation
of the sub-Markov transition kernel P εζ (x, dy) = p̂x(y)dy, where

p̂x(y) =
∑
i,j

pij1 {x ∈ ai}1 {y ∈ aj} .

Proposition 31 shows that the mass deficiency of the sub-Markov approxi-
mation P εζ is uniformly small. Furthermore, we have P εζ ≤ P , and therefore
Lemma 30 shows that the density associated to the above computed eigen-
vector ψ can be made α-close to the invariant density of P by choosing
ε < O(δ).

One then computes a finite-dimensional approximation, which has a
spectral gap. Moreover, this approximation is such that its invariant density
is close to the invariant density of Sε.

4.2 Rate of convergence

Here we essentially show that the Markov kernel P of the perturbed map Sε
has a spectral gap property. For any cover ξ of M ,

1. define
ăi = ai \ ∪a∈ξ\aia

for all ai ∈ ξ,

2. define furthermore the sub-Markov matrix Q by

Q(ai → aj) ≡ Q(i→ j) ≡ Qi,j =

{
0 if aj /∈ fin(ai)
vol(ăj)
vol(Bε)

if aj ∈ fin(ai)

for any two atoms, which defines a weighted oriented graph on ξ,

3. and finally, define the numbers

N(ai → aj) ≡ N(i→ j) ≡ Ni,j = inf{n ≥ 1 : Qni,j > 0} ∈ {1, 2, . . . ,∞}

for any two atoms of ξ.
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The standing assumption in this section is that the cover ξ of M is such
that

ξirr =
⋂
a∈ξ
Oin(a) (1)

is non-empty. We will refer to ξirr as the inner irreducible part of ξ.

Lemma 26 (Comparision lemma). The estimate

Pm(x,A ∩ ăj) ≥ 1 {x ∈ ai} Qmi,j vol(A | ăj)

is satisfied for all x ∈M , any aj ∈ ξ, and all A ∈ B. In particular, for any
ai ∈ ξ, and any two ξ0, ξ1 ⊂ ξ

Pm(x,A) ≥ 1 {x ∈ ai}
∑
aj∈ξ1

Qmi,j vol(A | ăj)

Pm(x,A) ≥
∑
ai∈ξ0

1 {x ∈ ăi}
∑
aj∈ξ1

Qmi,j vol(A | ăj)

hold true for all x ∈M , A ∈ B and m ≥ 1.

Proof. Let A ∈ B, as well as ai ∈ ξ and x ∈ ai be arbitrary, but fixed. Then
for any integer m ≥ 1 and any aj ∈ ξ

Pm(x,A ∩ ăj) =

∫
Pm−1(x, dxm−1)P(xm−1, A ∩ ăj)

≥
∑

ak∈ξ:aj∈fin(ak)

∫
ăk

Pm−1(x, dxm−1)P(xm−1, A ∩ ăj)

=
∑

ak∈ξ:aj∈fin(ak)

Pm−1(x, ăk)
vol(A ∩ ăj)

vol(Bε)

=
∑
ak∈ξ
Pm−1(x, ăk)Qk,j vol(A | ăj)

we obtain

Pm(x,A ∩ ăj) ≥
∑
ak∈ξ
P(x, ăk)Q

m−1
k,j vol(A | ăj)

by induction. Because x ∈ ai and P(x, ăk) ≥ Qi,k we obtain the estimate

Pm(x,A ∩ ăj) ≥ Qmi,j vol(A | ăj) for all x ∈ ai, aj ∈ ξ

for all m ≥ 1.
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Denote for x ∈M and A ∈ B by

P(x,A) =
1

Nξ

Nξ∑
n=1

Pn(x,A) , Nξ = max
aj∈ξ

max
ai∈ξirr

N(aj → ai) (2)

a new Markov transition kernel on M . By choice of ξirr the number Nξ is
finite, and hence P(x,A) is a well-defined Markov transition kernel on M .
Furthermore, let

β = min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j , 0 < β ≤ 1 , (3)

where the fact that β > 0 is shown in the following lemma.

Lemma 27 (Lower bound on β). The following (rather pessimistic) bound
on β

β ≥ #ξirr

Nξ

[
min
a∈ξ

vol(ă)

vol(Bε)

]Nξ
holds, and shows in particular that β > 0.

Proof. From its definition in (3) we have

β = min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j ≥
1

Nξ
min
ai∈ξ

∑
aj∈ξirr

Q
Ni,j
i,j .

Furthermore, due to the lower bound

Qi,j ≥

{
0 if aj /∈ fin(ai)

q if aj ∈ fin(ai)
, q = min

a∈ξ

vol(ă)

vol(Bε)

the above can be further estimated from below by

β ≥ 1

Nξ
min
ai∈ξ

∑
aj∈ξirr

qNi,j ≥ 1

Nξ
min
ai∈ξ

∑
aj∈ξirr

qNξ ≥ qNξ

Nξ
#ξirr .

Lemma 28 (Doeblin condition for P). There exists a probability measure
ϕ on M such that infx∈M P(x,A) ≥ β ϕ(A) holds for all A ∈ B.
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Proof. By Lemma 26 we have for any ai ∈ ξ

Pn(x,A) ≥ 1 {x ∈ ai}
∑

aj∈ξirr

Qni,j vol(A | ăj)

for all x ∈M , A ∈ B and all n ≥ 1. Therefore,

P(x,A) =
1

Nξ

Nξ∑
n=1

Pn(x,A) ≥ 1 {x ∈ ak}
1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qnk,j vol(A | ăj)

≥ 1 {x ∈ ak}min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j vol(A | ăj)

for all ak ∈ ξ and all x. And since x is contained in at least one element of
ξ we obtain the bound

P(x,A) ≥ min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j vol(A | ăj)

uniformly in x ∈M and A ∈ B.
Now define the measure ψ on M by

ψ(A) = min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j vol(A | ăj) .

The choice Nξ implies that

ψ(ăk) = min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j vol(A | ăj) = min
ai∈ξ

1

Nξ

Nξ∑
n=1

Qni,k ≥ min
ai∈ξ

1

Nξ
Q
N(ai→ak)
i,k > 0

for any ak ∈ ξirr. In particular, the measure ψ is non-trivial. Therefore,

β ϕ(A) = ψ(A) , 1 ≥ β = ψ(M) = min
ai∈ξ

1

Nξ

Nξ∑
n=1

∑
aj∈ξirr

Qni,j > 0 ,

which finishes the proof.

Proposition 29 (Invariant measure for P and P; rate of convergence).

1. The Markov kernel P has a unique invariant probability measure π.
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2. For any initial measure µ0 on M the estimate

|µ0 P
n − π|TV ≤ (1− β)n

holds for all n ≥ 1, where β is as in Lemma 28, and the total variation
norm of a signed measure ν is defined to be |ν|TV = sup|A|≤1 ν(A).

3. The Markov kernel P has a unique invariant probability measure, which
is also given by π.

Proof. The first two claims are immediate consequences of the Doeblin con-
dition for P proved in Lemma 28.

If µ is an invariant probability measure for P, then it clearly must be
invariant for P. Therefore the first of the three claimed statements implies
that P can have at most one invariant measure, which must be π.

By invariance of π for P and P P = P P the identity πP = πPn P =
πP Pn holds for all n ≥ 1, so that the second of the claimed expressions
shows that πP = limn→∞ πP P

n
= π, which finishes the proof.

4.3 Approximation of the stationary distribution

In what follows we assume that the perturbed system has a unique ergodic
measure and that its support is strictly contained in M . Moreover, we
assume that P has a spectral gap 0 < θ ≤ 1 in the following sense. Let
N ≥ 1 be fixed, and denote by

P =
N∑
k=1

1

N
Pk (4a)

the Markov kernel corresponding to the sampled chain with uniform sam-
pling distribution on {1, . . . , N}. The spectral gap property that we assume
is that for any two probability measures ν and ν ′

|ν Pn − ν ′ Pn|TV ≤ C (1− θ)n |ν − ν ′|TV (4b)

for all n ≥ 1, where C is some constant that does not depend on the choice
of the measures ν and ν ′.

Lemma 30 (Sub-Markovian approximation). Let Q be a sub-Markov kernel
on M such that Q ≤ P, and introduce

κ− = inf
x∈M

[
P(x,M)−Q(x,M)

]
, κ+ = sup

x∈M

[
P(x,M)−Q(x,M)

]
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which thus satisfy 0 ≤ κ− ≤ κ+ ≤ 1. Let ψ be a probability measure on M ,
and let λ ∈ R be such that λψ = ψQ. Then the estimates

0 ≤ κ− ≤ 1− λ ≤ κ+ ≤ 1 and |π − ψ|TV ≤
C

θ

[
1−

N∑
k=1

1

N
(1− κ+)k

]
hold.

Proof. Since π is stationary for P, it is also stationary for P. Therefore, we
have that (π − ψ)P − (π − ψ) = ψ − ψP, and hence

(π − ψ)Pn − (π − ψ) =
n−1∑
k=0

(ψ − ψP)Pk

for any n ≥ 1. Since ψ and ψP are probability measures on M , the assumed
spectral gap implies

|(π − ψ)Pn − (π − ψ)|TV ≤
n−1∑
k=0

C (1− θ)k |ψ − ψP|TV ≤
C

θ
|ψ − ψP|TV

for all n ≥ 1, and hence |π − ψ|TV ≤ C
θ |ψ − ψP|TV by passing to the limit

n→∞.
Furthermore, since Q is sub-Markovian and Q ≤ P we have that

λ = λψ(M) = [ψQ](M) = [ψP](M)−
[
[ψP](M)− [ψQ](M)

]
= 1−

∫
ψ(dx)

[
P(x,M)−Q(x,M)

]
and hence

0 ≤ 1− κ+ ≤ λ ≤ 1− κ− ≤ 1

follow for the upper and lower bounds on λ.
Finally, note that with

Q =

N∑
k=1

Qk , ψQ = λψ , λ =

N∑
k=1

1

N
λk

it follows that

ψP − ψ = ψP − ψQ+ ψQ− ψ = (ψP − ψQ)− (1− λ)ψ
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where ψP−ψQ and (1−λ)ψ are positive measure of equal total mass 1−λ.
And since P is a Markov operator the trivial bound |ψ − ψP|TV ≤ 1 − λ
given by the total mass implies

|π − ψ|TV ≤
C

θ
|ψ − ψP|TV ≤

C

θ
(1− λ) =

C

θ

[
1−

N∑
k=1

1

N
λk
]

≤ C

θ

[
1−

N∑
k=1

1

N
(1− κ+)k

]
and finishes the proof.

4.4 Time complexity of computing the ergodic measures

For sake of simplicity, from now on we assume M to be the d-dimensional
cube [0, 1]d and ζδ = {a1, ..., a|ζ|} to be a regular partition of diameter δ.

Because of regularity, all the atoms have the same volume vol(a) = δd. The
volume of any ε-ball will be denote by vol(Bε).

Let ζ be a partition of diameter δ. We now describe how to construct
a sub-Markov kernel P εζ with a prescribed total mass deficiency. P εζ will

consist of a |ζ| × |ζ| matrix whose entries will be either 0 or p = vol a
volBε

.
If the map f is poly-time computable, then each entry can be decided in
polynomial time.

Let
m(δ) := sup{d(f(x), f(y)) : x, y ∈M,d(x, y) ≤ δ} (5)

be the uniform modulus of continuity of f . Then of course we have that

m(δ)↘ 0 as δ → 0

and
d(f(x), f(y)) ≤ m(δ) whenever d(x, y) ≤ δ.

Proposition 31.

sup
x∈M

[P (x,M)− P εζ (x,M)] ≤ CM
m(δ) + 2δ + 2ε

ε

where CM is a constant which depends only on the manifold M .
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Proof. Let x ∈ a. Denote the density of P εζ (x,M)] by p̂x(y).

P (x,M)− P εζ (x,M) =
∑
a′∈ζ

∫
a′
dy[px(y)− p̂x(y)]

=
∑
a′∈ζ

∫
a′

dy

vol(Bε)
[1
{
y ∈ f(x)ε ∩ a′

}
− p̂x(y)]

=
∑
j

1

vol(Bε)
[vol(f(x)ε ∩ aj)− vol(aj)1 {dε(cj ,Sε(ci)) < ε−m(δ)− δ − 2ε}]

≤
∑
j

vol(aj)

vol(Bε)
[1 {A} − 1 {B}] (where A = {d(cj ,Sε(ci)) < ε+m(δ) + δ + ε}

and B = {d(cj ,Sε(ci)) < ε−m(δ)− δ − 3ε})

=
∑
j

vol(aj)

vol(Bε)
1 {ε−m(δ)− δ − 3ε ≤ d(cj ,Sε(ci)) < ε+m(δ) + δ + ε}

≤
vol(Bε+m(δ)+2δ+ε)− vol(Bε−m(δ)−3ε−2δ)

vol(Bε)

≤ CM
m(δ) + 2δ + 2ε

ε
.

5 Proof of Theorem C

5.1 Outline of the Proof

In the proof of Theorem B, we approximated the transfer operator by a
finite matrix {pi,j}, which corresponded more or less to the projection of
the operator P on a finite partition ζ. In this sense, this discretization
was a “piece-wise constant” approximation of the operator P . In order
to increase the precision of this approximation, and hence the precision
α = 2−n of the computation of the invariant measure, we are forced to
increase the resolution of the partition ζ. This makes the size of the finite
matrix approximation of P grow exponentially in n.

The idea in getting rid of this exponential growth, is to use a fixed
partition ζ, which will depend only on the noise Kε, and not on the precision
n. Instead of using a “piece-wise constant” approximation, we represent the
operator P exactly on each a ∈ ζ by a Taylor series. The regularity of the
transition kernel implies the corresponding regularity of the push-forward of
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any density. More precisely, if ρ(t) denotes the density at time t, then

ρ(t)(x) =
∑
a∈ζ

1 {x ∈ a}
∞∑
k=0

ρ
(t)
a,k (x− xa)k

ρ(t+1)(x) =
∑
ai∈ζ

1 {x ∈ ai}
∞∑
l=0

ρ
(t+1)
ai,l

(x− xa)l

ρ
(t+1)
ai,l

=
∑
aj ,m

ρ
(t)
aj ,m

∫
aj

(y − xaj )m
∂l2Kf (y, xai)

l!
dy .

provides an infinite matrix representation of the transition operator in terms
of its action on the Taylor coefficients of the densities. See Section 5.2.

The assumed analytic properties of the transition kernel allow us to
truncate the power series representation of the densities (see Lemma 38),
and represent the corresponding truncation PN of the transition operator as
a finite matrix.

We then show that the size of this matrix depends linearly on the bit-size
n of the precision of the calculation of the invariant density (see Theorem
36 and Proposition 39). This is where the analytic properties of the kernel

Kε are used. The actual algorithm iterates P
(t)
N ρ of some initial density ρ

sufficiently many times (linear in the bit size precision), and then uses the
resulting vector to compute n significant bits of the the invariant density
π(x) at some point x by using the Taylor formula

N∑
k=1

PNρ
(t)(k)(x− xa)k.

This shows that the invariant density is an analytic poly-time com-
putable function, and Proposition 11 finishes the proof.

We now give the technical details. As mentioned in the introduction, we
consider only the one dimensional case.

5.2 A priori bounds

The standing assumptions on Kε(y, x) in this section are:

Assumption 32 (Uniform regularity of the transition kernel).

(i) There exists constants

C > 0 and γ > 0 such that |∂k2Kε(y, x)| ≤ C k! eγk for all k ∈ N and
all x, y ∈M .
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(ii) Kε(f(·), x) is poly-time integrable.

Since ε will be fixed, we will denote the kernel Kε(f(y), x) just by
Kf (y, x) to shorten the notation.

Let µ be a probability measure on M . Recall that the transition operator
is given by

µP (dx) = dx ρ(x) , ρ(x) =

∫
M
µ(dy)Kε(f(y), x) , (6)

and shows that µP (dx) has a density for any probability measure µ.

Lemma 33 (A priori regularity of ρ).

(i) The estimate supx∈M |∂kρ(x)| ≤ C k! eγk holds for all k ∈ N.

(ii) For any partition ζ satisfying eγdiam ζ < 1 the density ρ admits for
all x the series representation

ρ(x) =
∑
a∈ζ

1 {x ∈ a}
∞∑
k=0

ρa,k(x− xa)k where |ρa,k| ≤ C eγk ,

which converges absolutely and exponentially fast, uniformly in x.

Proof. By definition of ρ(x) we have ∂kρ(x) =
∫
M µ(dy) ∂k2Kε(f(y), x) for

all k ∈ N and all x ∈M . Therefore, the claimed estimate on supx∈M ∂kρ(x)
follows from Assumption 32. Using this result the second claim follows from
Taylor’s theorem.

Our method will further rely on the following assumption:

Assumption 34 (Mixing assumption).

(iv) There exists constants C > 0 and θ < 1 such thatwwww µP t(dx)

dx
− νP t(dx)

dx

wwww
∞
≤ C θt |µ− ν|TV ≤ 2C θt for all t ≥ 1

holds for any two probability measures µ and ν.

Under Assumption 34 the Markov chain generated by P has a unique
invariant measure, which we denote by π(dx). Furthermore, it also follows
that this measure has a bounded density with respect to the volume mea-
sure on M . By slightly abusing notation we will denote the density of the
stationary measure by π(x).

We now show the two facts above follow from assumption (i).
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Lemma 35 (Examples for Kε). Part (i) of Assumption 32 is automatically
satisfied, if the kernel Kε(y, ·) is analytic, uniformly in y. If in addition
there exist constants 0 < c− ≤ c+ such that c− ≤ Kε(y, x) ≤ c+, then
Assumption 34 is satisfied.

Proof. If Kε(y, ·) is analytic, then Kε(y, ·) admits an everywhere converging
power series representation, which by compactness of M implies that there
exist C(y) > 0 and γ(y) > 0 such that supx∈M |∂k2Kε(y, x)| ≤ C(y) k! eγ(y)k

for all k ∈ N. The assumed uniformity of the analyticity simply means that
C(y) and γ(y) can be uniformly chosen with respect to y, which proves the
first part.

Now assume the existence of c± as stated in the second part. Let µ and
ν be two probability measures on M . From the definition of the transition
operator (6)∫
M

[µP (dx)− ν P (dx)]A(x) =

∫
M
dx

∫
M

[µ (dy)− ν (dy)]Kf (y, x)A(x)

=

∫
M
dx

∫
M

[µ (dy)− ν (dy)] [Kf (y, x)− c−]A(x)

= θ

∫
M
dx

∫
M

[µ (dy)− ν (dy)]
Kf (y, x)− c−

θ
A(x) , θ = 1− |M | c− < 1

for any bounded function A : M → R. The assumed lower bound implies

that
Kf (y,x)−c−

θ is a probability density (with respect to x), and hence

|µP − νP |TV ≤ θ |µ− ν|TV

follows. Iterating this inequality we obtain

|µP t − νP t|TV ≤ θt |µ− ν|TV ≤ 2 θt

for all t ≥ 1 and any two probability measures µ and ν. From the upper
bound on the kernel it followswwww µP (dx)

dx
− νP (dx)

dx

wwww
∞

= sup
x∈M

∣∣∣ ∫
M

[µ (dy)− ν (dy)]Kf (y, x)
∣∣∣ ≤ c+ |µ− ν|TV

and hencewwww µP t(dx)

dx
− νP t(dx)

dx

wwww
∞
≤ c+ |µP t−1 − ν P t−1|TV ≤ c+ θ

t−1 |µ− ν|TV

as was to be shown.
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Because of Lemma 33 we can consider only densities satisfying the a
priori bound, and we will do so. The density of at time t of a probability
measure will be denoted by ρ(t)(x).

Using Lemma 33 we know that for any time t, such a density can be
written as

ρ(t)(x) =
∑
a∈ζ

1 {x ∈ a}
∞∑
k=0

ρ
(t)
a,k (x− xa)k

and therefore

ρ(t+1)(x) = Pρ(t)(x) =

∫
M
ρ(y)Kf (y, x) dy

=
∑
aj ,m

ρ
(t)
aj ,m

∫
aj

(y − xaj )mKf (y, x) dy .

Expanding Kf gives

ρ(t+1)(x) =
∑
ai∈ζ

1 {x ∈ ai}
∞∑
l=0

ρ
(t+1)
ai,l

(x− xa)l

ρ
(t+1)
ai,l

=
∑
aj ,m

ρ
(t)
aj ,m

∫
aj

(y − xaj )m
∂l2Kf (y, xai)

l!
dy .

We can therefore represent the operator P , acting on densities satisfying
the a priori regularity, exactly by a matrix of size |ζ| × |ζ|, whose entry
P (ai,aj) is in turn an infinite matrix with matrix elements

P (ai,aj)(l,m) =

∫
aj

(y − xaj )m
∂l2Kf (y, xai)

l!
dy , l,m ≥ 0 . (7)

5.3 Truncation step

The idea here is to truncate the operator P , represented by the infinite
matrix (7), by dropping the higher order terms. Recall Lemma 33 and
corresponding representation of densities

ρ(x) =
∑
a∈ζ

1 {x ∈ a}
∞∑
k=0

ρa,k(x− xa)k ,

with |ρa,k| ≤ C eγk for all a, k, where eγdiam ζ < 1. For any N ≥ 1 we define
the truncation projection

ΠNρ(x) :=
∑
a∈ζ

N∑
k=0

ρa,k(x− xa)k , ρ̂N (x) = ρ(x)−ΠNρ(x) , (8a)
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where ρ̂N denotes the remainder term. Correspondingly, we define the trun-
cated transition operator by

PN := ΠNPΠN , (8b)

whose matrix elements are given by (7), with l,m = 1, . . . , N . A schematic
representation of one application of the operator PN is shown in Fig. 1.

Figure 1: Graphical representation of the equation PN ρ
(t)
N = ρ

(t+1)
N .

The following theorem states the desired linear dependence of both the
number of iterations t and the number of Taylor coefficients N in the preci-
sion parameter n.

Theorem 36. There exist linear functions t(n) and N(n) such thatwwπ − P tNρww∞ ≤ 2−n

for all n ∈ N, uniformly in ρ.

Proof. We will need the following lemmas:
Let µ be a probability measure with a density of the type of Lemma 33.

Denote the densities of µP t by ρ(t) for all t ≥ 0.

Lemma 37. Then

ΠNρ
(t) − P tNρ(0) =

t−1∑
s=0

P sN QNρ
(t−1−s)

holds, where QN := ΠNP − PN = ΠNP (1−ΠN ).

Proof. Observe that the identity ρ(t) = Pρ(t−1) can be rewritten as ΠNρ
(t) =

PNρ
(t−1)+QNρ

(t−1), so that ΠNρ
(t) = P tNρ

(0)+
∑t−1

s=0 P
s
N QNρ

(t−1−s) follows
by iteration.
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Lemma 38 (Truncation bounds).

(i) For any bounded function η the estimate

‖ΠNPη ‖∞ ≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]
‖ η ‖∞

holds for all N .

(ii) For any bounded function η the estimate

‖P sNη ‖∞ ≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]s
‖ΠNη ‖∞

holds for all s ≥ 0 and all N .

Proof. By definition

ΠNPη(x) =

∫
M
dy η(y) Πx

NKf (y, x)

where the superscript x indicates that ΠN acts on the x-variable in Kf (y, x).
Therefore,

‖ΠNPη ‖∞ ≤ ‖ η ‖∞max
x

∫
dy|Πx

NKf (y, x)|

≤ ‖ η ‖∞
[
1 + max

x

∫
dy |(1−ΠN )xKf (y, x)|

]
≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]
‖ η ‖∞

where used the normalization
∫
dyKf (y, x) = 1 of the kernel, and the a

priori bound on the Taylor coefficients of Kf (y, x) with respect to x.
In particular, it follows that

‖PNη ‖∞ = ‖ΠNPΠNη ‖∞ ≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]
‖ΠNη ‖∞

and therefore

‖P sNη ‖∞ ≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]s
‖ΠNη ‖∞

for all s ≥ 0 by iteration, which finishes the proof.
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Proposition 39. Let ρ be an arbitrary admissible density. For all N , twwπ − P tNρww∞ ≤ [1 + |M | qN
]
e|M | qN t qN t+ qN + 2C θt

where we set qN = C [eγdiam ζ]N+1

1−eγdiam ζ .

Proof. Observe that for all t the identity P tNQNρ = P tN P (ρ− ρN ) holds by
the definition of the PN and QN , and therefore

‖P sNQNρ ‖∞ = ‖P sN P (ρ− ρN ) ‖∞

≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]s
‖ΠNP (ρ− ρN ) ‖∞

≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]s+1
‖ ρ− ρN ‖∞

holds for all s ≥ 0 and all N , by Lemma 38. Using the a priori bounds on
the density ρ stated in Lemma 33 we obtain

‖P sNQNρ ‖∞ ≤
[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]s+1
C

[eγdiam ζ]N+1

1− eγdiam ζ

for all admissible densities ρ, and all N .
Combining this uniform estimate with Lemma 37wwwΠNρ

(t) − P tNρ(0)
www
∞
≤

t−1∑
s=0

wwwP sN QNρ(t−1−s)
www
∞

≤
t−1∑
s=0

[
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]s+1
C

[eγdiam ζ]N+1

1− eγdiam ζ

=
[ 1

|M |
+ C

[eγdiam ζ]N+1

1− eγdiam ζ

] ([
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]t
− 1
)

and thereforewwπ − P tNρww∞ ≤ wwwΠNρ
(t) − P tNρ

www
∞

+
www ρ(t) −ΠNρ

(t)
www
∞

+
wwwπ − ρ(t)

www
∞

≤
[ 1

|M |
+ C

[eγdiam ζ]N+1

1− eγdiam ζ

] ([
1 + |M |C [eγdiam ζ]N+1

1− eγdiam ζ

]t
− 1
)

+ C
[eγdiam ζ]N+1

1− eγdiam ζ
+ 2C θt

for all N , t and any admissible density ρ.
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Finally, the inequality (1 + ξ)t − 1 ≤ et ξ t ξ, which holds for all ξ, t > 0,
implies wwπ − P tNρww∞ ≤ [1 + |M | qN

]
e|M | qN t qN t+ qN + 2C θt

qN = C
[eγdiam ζ]N+1

1− eγdiam ζ

which finishes the proof.

Now we are in a position to finish the proof of Theorem 36. Fix k > 0.
Note that the particular choices

t =
k

log 1
θ

, N + 1 ≥ k + log k

log 1
eγdiam ζ

+
0∨[log(|M |C)− k]

log 1
eγdiam ζ

+
log 1

1−eγdiam ζ − log log 1
θ

log 1
eγdiam ζ

combined with the estimate in Proposition 39 showswwπ − P tNρww∞ ≤ [1 + |M | qN
]
e|M | qN t qN t+ qN + 2C θt

≤
[
1 + |M | qN t

]
e|M | qN t qN t+ qN t+ 2C θt

≤ C [3 + 2 e] e−k ≤ 8.5C e−k

so that setting k = n+ log[8.5C] shows that these linear functions

t(n) =
1

log 1
θ

n+
log[8.5C]

log 1
θ

N(n) =
2

log 1
eγdiam ζ

n+
0∨[log(|M |C)− log(8.5C)− n]

log 1
eγdiam ζ

+
log 1

1−eγdiam ζ − log log 1
θ

log 1
eγdiam ζ

+
2 log[8.5C]

log 1
eγdiam ζ

− 1

will suffice for
wwπ − P tNρww∞ ≤ 2−n for all n.
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