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Abstract

In this paper we consider the Tile Assembly Model proposed by Rothemund and Winfree.
Let λn be such that λn

λn = n. We call “thin” rectangles those having dimensions k × n with
1 ≤ k ≤ λn. We prove that, when the temperature is constant, the program size complexity of
these rectangles is Θ(n1/k). On the other hand, if we allow a single change in the temperature,
the complexity decreases dramatically to O(λn).

1 Introduction

In this paper we consider the Tile Assembly Model proposed by Rothemund and Winfree [6, 8].
The individual components are modelled as square tiles. These tiles “float” on the two dimensional
plane. They cannot be rotated. Each side of a tile has a specific “glue”. When two tiles collide
they stick if their abbuting sides have compatible glues.

The main difference between this model and the classical one [7] is that here we take into
account a global parameter: the temperature T . More precisely, two tiles can stick as far as the
strength of the glue in their abbuting sides is high enough with respect to T .

The problem tackled by many authors is to construct a set of tiles that self-assemble into a
particular shape. The program size complexity of a given shape S is the minimal number of distinct
tiles required to produce S. Rothemund and Winfree [6] proved that the program size complexity
of an n×n square is Θ(log(n)/(log log(n)). Adleman et al. [1] showed that the problem of finding
a minimal tile system that uniquely produces a given shape is NP-hard in general but, for some
families of shapes, it can be solved in polynomial time. They developed algorithms for trees,
squares, “thick rectangles” (rectangles where the width is at least logarithmic in the height), and
they ask for “thin rectangles”. In another work, Adleman et al. [2] studied infinite ribbons and
undecidability results were obtained. 3-dimensional structures have also been “constructed” by
self-assembly [3, 4].
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In this paper we consider k×n-rectangles. Our motivation is twofolds. On one hand we analyze
how does the complexity vary with k. On the other hand we show how to significatively decrease
the complexity by the following simple protocol:

• Construct a (k + λn) × n-rectangle with temperature 2.

• Increase the temperature to 4.

• The maximal 4-stable sub-shape of the (k + λn) × n rectangle is a k × n rectangle. This is
the figure that will “tolerate” the higher temperature. The remaining part will disintegrate.

We would like to point out that this model has been conceived not only as a way to form
particular shapes, but also as a way to execute computations [5, 9, 10].

2 Notation and definitions

A tile t is an oriented square with glues in its north, south, east and west edges. Formally,
t = (σN , σE , σS , σO) ∈ Σ4. Each type of glue σ ∈ Σ has a strength g(σ) ∈ N. Tiles are respresented
as in the next figure. The number of lines in front of the color corresponds to the strength of it.
There is one exception to that convention: no lines mean strength 1.
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Figure 2.1: Two ways of representing the same tile. One line or no line correspond
to the same strength of the color (strength 1).

Let us consider a set of tiles T , a particular tile s (called the seed), a temperature T , and
a strength function g. This 4-tuple (T, s, g, T ) is called a tile system. A configuration C is
an assignment of tiles to a connected region of the plane so that adjacent tiles have the same
glue in their abbuting edges. A configuration C is T -stable if it can not be partitioned into two
subconfigurations C1 and C2 such that the interaction strength g(C1, C2) < T . The value g(C1, C2)
is the sum of all the strength of the sides of the bound between C1 and C2 (see Figure 2.2).

and1 C2

C C1 2

bound betweenC

Fig. 2.2: Bound between C1 and C2.
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The dynamics is as follows. The initial configuration is the seed s ∈ T placed at the origin
of the plane. We denote this configuration by s. Let C be a T -table configuration. We write
C → C′ if C′ is obtained from C by adding a single tile such that C′ is T -table. We say that the
configuration C is produced by the tile system T=(T, s, g, T ) if s →∗ C.

A tile system T will be called deterministic if for every cell (i, j) of the plane and for every two
configurations C′, C′′ produced by T covering (i, j), we have C′(i, j) = C′′(i, j).

If we view the dynamics of a tile system as a directed graph with the nodes being the T -stable
configurations produced by T linked according to →, then it is not difficult to notice that the graph
is a lattice if and only if the dynamics is deterministic. It is interesting to point out that if we just
increase the temperature of the tile system then the new dynamics corresponds to a sublattice of
the original one.

We are interested here in deterministic dynamics. Moreover, we focus our attention on finite
lattices. These have a global maximum which corresponds to the final configuration. In this case
we say that this final configuration is uniquely produced. Recall that the shape of this configuration
is the object we are interested in.

A k×n-rectangle is the rectangle that has k columns and n rows. The program size complexity
of a k × n-rectangle will be denoted by CT (k, n) and corresponds to the minimal number of tiles
that uniquely produce the rectangle with temperature T .

3 Constant temperature and “thin” rectangles

We choose, as Rothemund and Winfree did [6], temperature T = 2. Notice that with temperature
1 the model becomes useless. In fact, in that case, the complexity of every shape becomes the
number of its cells (since otherwise the object would keep indefinitely growing). For sake of clarity
we will explain in detail the case of the 3 × n rectangle. Extensions to the k × n-rectangle, with
k << n, are rather straightforward.

Proposition 3.1. C2(3, n) ≥ n1/3.

Proof : Let T be the set of tiles of the tile system that uniquely produces the rectangle. If
|T | < n1/3 then there will be two repeated rows. This would imply that the object will grow
indefinitely. This is a contradiction.

Proposition 3.2. C2(3, n) = O(n1/3).

Proof : We will show a tile system T(3,n) that uniquely produces the 3 × n-rectangle. The
main idea behind the proof is a generalization of the “counting principle” used by Rothemund and
Winfree [6]. The tile system simulates a binary counter in which the ith row above the origin (seed
row) represents the binary integer i. The limitation is that the total number of distinct integers
that can be represented -what determines the maximum height of the rectangle (23 in this case)-
depends on the width. To solve this, we use a base b such that the height n written in b-ary can
be represented in terms of the width (in this case we need b = pn1/3

q and the tile system counts
in base b representing in each row an integer i between 0 and n − 1).
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We will show the construction of a 3× n-rectangle using 4b + 2 tiles. Each tile has, in addition
to its four labels, a “main label” that gives the semantic information explaining its “function”.

The tile system works as follows.

The seed row encodes the number b3 −n and is formed by 2 special tiles added to the seed tile.
The row i + 1 assembles to the row i increasing the counter by 1.

The other 4b tiles appear in the next figure. They are classified into 4 types: Type 1, Type
2, Type 3, Rightmost. In addtion, by looking horizontally, another classification arises: 0-tiles,
1-tiles, . . . , (b-1)-tiles.
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Figure 3.2: Set of tiles that works as a counter. These tiles are used to construct
a 3 × n-rectangle.

In the next figure it is explained how the semantic information of the “main label” must be
understood.
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tile.

**
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C
r

X The tile in the west is of type 3
if and only if this indicator appears.

This indicates that it is a rightmost

This one is a C−tile.

There must be an X−tile in the
north side. If nothing indicates

There must be a Y−tile in the
south side. If nothing indicates
there must be another C−tile.

there must be another C−tile.

Fig 3.3: A C-tile and its semantic information.

Since the north side strength of the (b − 1)-tiles is 1, when the integer n − 1 is encoded, the
counter stops. By following the semantic rules it is not difficult to check that the desired rectangle
is assembled.

Figure 3.4 shows the case n = 25.
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Fig 3.4: Set of tiles that uniquely produces a 3 × 25-rectangle. The east and west
sides have all strength 1. In this case b = 3. The seed row encodes the number
33 − 25 = 2 or 0 0 2 if we write it in b-ary.

Corolary 3.1. C2(3, n) = Θ(n1/3)
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4 Constant temperature and “thick” rectangles

Let us consider the value λn such that λn
λn = n. In this Section we will show that, for a width

k ≥ λn, the program size complexity C2(k, n) = O(pλnq). This upper bound does not depend on
k.

Proposition 4.1. C2(λn, n) = Θ(λn).

Proof : The construction of a λn × n-rectangle is straightforward from the construction shown
in Section 3. The set of tiles shown in Figure 3.2 also works in this general case. We just need to
put b = pn1/λnq = pλnq and add pλnq− 1 ≤ b special tiles to form the seed row from the seed tile.
Therefore 4b + λn − 1 ≤ 5b tiles are used.

It is important to observe that, in order to construct the k × n-rectangle, we needed on one
hand the “counter” set of O(pn1/k

q) distinct tiles and, on the other hand, k − 1 special tiles to
form the seed row. In other words, for having a complexity O(n1/k), we needed the value of k to
be at most n1/k. This explains the appearance of the critical value λn.

Proposition 4.2. C2(λn + k, n) = O(λn).

Proof : First we need 2C2(λn, n) tiles in order to construct a particular λn × n rectangle. The
particularity lies in the fact that the rightmost column is divided into two kinds of tiles: the k
upper ones and the n− k lower ones. The idea is rather simple: the seed row encodes in its north
side the number bb − k and the number bb − (n − k) in its south side (see Figure 4.1).
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Figure 4.1 Two counters are used to construct a λn × n-rectangle.
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We need another 4 “filling” tiles. Their job is to complete a k × n rectangle to the right of the
special column. The particular tile of the column -the one with strength 2 in its right side- is a
key signal for the “filling” process (see Figure 4.2).
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Figure 4.2: The 4 “filling” tiles and the way they act starting from the particular
column.

5 Increasing the temperature to T = 4

Suppose that we have a T -stable configuration of a given tile system. And suppose that we decide
to increase the temperature to T + ∆. Without loss of generality we asume the seed tile to be
fixed at the origin (or, equivalently, the origin is the place where the seed is located).

A new dynamics will emerge. If ∆ is high enough then the configuration will lose its stability
and will start to break. The following Proposition says that it doesn’t matter how this process
goes on. The output, which is for us the configuration that contains the seed, will always be the
same.

Proposition 5.1. Let D be a T -stable configuration produced by a tile system T = (T, s, g, T ).Then
there exists a unique subconfiguration M ⊆ D, T + ∆-stable maximal (w.r.t. ⊆), that is produced
by T.

Proof : The seed is a T + ∆-stable configuration. Let C1 and C2 be two T + ∆-stable config-
urations produced by the tile system. The determinism allows us to consider the superposition of
C1 and C2 as a feasible configuration. Moreover, this configuration is T + ∆-stable.

In this new context we can define the program size complexity of a k × n-rectangle, denoted
by CT +∆

T
(k, n), to be the minimal number of distinct tiles that uniquely produce a shape whose

maximal T + ∆-stable subconfiguration is the k × n-rectangle.
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Let us return to our original problem in which we wanted to construct a 3×n-rectangle. With
constant temperature T = 2 we needed Θ(n1/3) distinct tiles.

If instead we construct a (λn + 3) × n-rectangle whose maximal 4-stable subconfiguration is
a 3 × n-rectangle and later we increase the temperature to T = 4, we will need only O(λn) tiles
and the final goal will remain unchanged. In other words, by playing with the temperature, the
program size complexity of the rectangle decreases dramatically. For instance, if n = 16.000.000,
the value in the constant approach is 252 while in the variable one is 8.

Proposition 5.2. C4
2 (3, n) = O(λn)

Proof : In the Figure 5.1 it is shown how to construct a (λn + 3)× n-rectangle whose maximal
4-stable subconfiguration is a 3× n-rectangle. A λn × n-rectangle is assembled using the previous
approach. Special tiles enlarge the seed row to construct (with stronger tiles) a 3×n-rectangle.
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Figure 5.1: The stronger tiles assemble into a 3 × n-rectangle by sticking to the
right of the λn × n-rectangle. Notice that the seed belongs to the 3 × n-rectangle.

6 Conclusions

The value λn is such that λλn

n = n. Our contribution is the study of the program size complexity
of the k × n-rectangles with 1 ≤ k ≤ λn. Our results can be stated as follows:

C2(k, n) = θ(n1/k)

and

C4
2 (k, n) = O(λn).

Tighter bounds should be obtained in the future.
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