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Abstract. In this paper we provide a framework for computable analysis of measure, probability and
integration theories. We work on computable metric spaces with computable Borel probability measures.
We introduce and study the framework of layerwise computability which lies on Martin-Löf randomness
and the existence of a universal randomness test. We then prove characterizations of effective measure
and integration notions in terms of layerwise computability. On the one hand it gives a simple way of
handling effective measure theory, on the other hand it provides powerful tools to study Martin-Löf
randomness.
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1 Introduction

Computable analysis is mainly focused on topological spaces. This can be observed in the main
two frameworks of computable analysis: domain theory reduces every infinite computation to a
convergence process in the Scott topology (see [1] e.g.) while in the theory of representations
(see [2] e.g.), the criterion for a representation to be acceptable (the technical term is admissible)
is that it is equivalent to the representation induced by the topology of the space (the standard
representation).

Computable analysis for measurable spaces and probability spaces has been much less investi-
gated. An effective presentation of measurable spaces is proposed in [3]. Computability on Lp-spaces
has been studied in [4], [5], both for euclidean spaces with the Lebesgue measure. Computability of
measurable sets has been studied, on the real line with the Lebesgue measure in [6] and on second
countable locally compact Hausdorff spaces with a computable σ-finite measure in [7]. In the latter
a computability framework for bounded integrable functions is also introduced, when the measure
is finite. A general computable framework for integration is still lacking: nothing is developed for
non locally compact spaces, or for unbounded functions on general spaces with general measures.

On the other hand, another effective approach to probability theory has already been deeply
investigated, namely algorithmic randomness, as introduced by Martin-Löf in [8]. This theory was
originally developed on the Cantor space, i.e. the space of infinite binary sequences, endowed with
a computable probability measure. Since then, the theory has been mainly studied on the Cantor
space from the point of view of recursion theory, focused on the interaction between randomness
and reducibility degrees. The theory has been recently extended to more general spaces in [9–11].

In this paper, we propose a general unified framework for the computable analysis of measure and
integration theory, and establish intimate relations with algorithmic randomness. We first consider
two natural ways (more or less already present in the literature) of giving effective versions of the
notions of measurable set, measurable map and integrable function.



2 Then we develop a third approach which we call layerwise computability and that, in a sense,
follows the idea that probability theory could be grounded on the algorithmic theory of randomness.
This new approach is based on the existence of a universal randomness test. This fundamental result
proved by Martin-Löf in his seminal paper is a peculiarity of the effective approach of mathematics,
having no counterpart in the classical world. Making a systematic use of this has quite unexpected
strong consequences: (i) it gives topological characterizations of effective measurability notions; (ii)
measure-theoretic notions, usually defined almost everywhere, become set-theoretic when restricting
to effective objects; (iii) the practice of these notions is rather light: most of the basic manipulations
on computability notions on topological spaces can be straightforwardly transposed to effective
measurability notions, by the simple insertion of the term “layerwise”. This language trick may
look suspicious, but in a sense this paper provides the background for this to make sense and being
practiced.

In this way, Martin-Löf randomness and the existence of a universal test find an application in
computable analysis. In [12] we show how this framework in turn provides powerful tools to the
study of algorithmic randomness, and a general way of deriving results in the spirit of [13,14].

In Sect. 2 we recall the background on computable probability spaces and define the notion
of layering of the space, which will be the cornerstone of our approach. In Sect. 3 we present two
approaches to make measure-theoretical notions on computable probability space effective. Some
definitions are direct adaptations of preceding works, some others are new (in particular the notions
of effectively measurable maps and effectively integrable functions). In Sect. 4 we present our main
contribution, namely layerwise computability, and state several characterizations. Being rather long,
the proofs are gathered in the appendix.

2 Preliminaries

Computable metric space. Let us first recall some basic results established in [10,11]. We work
on the well-studied computable metric spaces (see [1], [15], [2], [16], [17]).

Definition 2.1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,
2. S = {si : i ∈ IN} is a countable dense subset of X with a fixed numbering,
3. d(si, sj) are uniformly computable real numbers.

S is called the set of ideal points. If x ∈ X and r > 0, the metric ball B(x, r) is defined as
{y ∈ X : d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈ Q, q > 0} of ideal balls, which is a basis of
the topology, has a canonical numbering B = {Bi : i ∈ IN}. An effective open set is an open set
U such that there is a r.e. set E ⊆ IN with U =

⋃
i∈E Bi. If Bi = B(s, r) we denote by Bi the closed

ball B(s, r) = {x ∈ X : d(x, s) ≤ r}. The complement of Bi is effectively open, uniformly in i. If
X ′ is another computable metric space, a function f : X → X ′ is computable if the sets f−1(B′i)
are effectively open, uniformly in i. Let IR := IR ∪ {−∞,+∞}. A function f : X → IR is lower
(resp. upper) semi-computable if f−1(qi,+∞] (resp. f−1[−∞, qi) is effectively opn, uniformly
in i (where q0, q1, . . . is a fixed effective enumeration of the set of rational numbers Q). We remind
the reader that there is an effective enumeration (fi)i∈IN of all the lower semi-computable functions
f : X → [0,+∞].



3Computable probability space. In [3] is studied an effective version of measurable spaces. Here,
we restrict our attention to metric spaces endowed with the Borel σ-field (the σ-field generated by
the open sets).

Let (X, d,S) be a computable metric space. We first recall what it means for a Borel probability
measure over X to be computable.

Theorem 2.1 (from [10]). The set M(X) of Borel probability measures over X can be made a
computable metric space, with the Prokhorov distance and the finite rational convex combinations
of Dirac measures as ideal measures.

The induced topology is the weak topology, characterized by the weak convergence: µn weakly
converge to µ if and only if:∫

f dµn →
∫
f dµ for all continuous bounded f : X → IR.

Theorem 2.2 (from [11,18,19]). Let µ be a Borel probability measure. The following statements
are equivalent:

1. µ is computable,
2. µ(Bi1 ∪ . . . ∪Bin) are lower semi-computable, uniformly in i1, . . . , in,
3.
∫
fi dµ are uniformly lower semi-computable (fi are the lower semi-computable functions).

Proposition 2.1. Let µ be a computable Borel probability measure. If f : X → [0,+∞) is upper
semi-computable and bounded by M then

∫
f dµ is upper semi-computable (uniformly in a descrip-

tion of f and M).

Following [11] we introduce:

Definition 2.2 (from [11]). A computable probability space is a pair (X,µ) where X is a
computable metric space and µ is a computable Borel probability measure on X.

From now and beyond, we will always work on computable probability spaces.
The measures of ideal balls are generally only lower semi-computable. One can prove that the

radii of the balls can be adjusted so that the measure of their boundaries are null (i.e. so that the
balls become sets of µ-continuity). A ball B(s, r) is said to be µ-almost decidable ball if r is a
computable positive real number and µ({x : d(s, x) = r}) = 0.

Theorem 2.3 (from [11]). Let (X,µ) be a computable probability space. There is a basis Bµ =
{Bµ

1 , B
µ
2 , . . .} of uniformly µ-almost decidable balls which is effectively equivalent to the basis B of

ideal balls. The measures of their finite unions are then uniformly computable.

Effective equivalence between B and Bµ means that every Bµ
i is an effective union of elements

of B, uniformly in i, and every Bi is an effective union of elements of Bµ, uniformly in i.

Algorithmic randomness. Here, (X,µ) is a computable probability space. Martin-Löf random-
ness was first defined in [8] on the space of infinite symbolic sequences. Generalizations to abstract
spaces have been investigated in [9–11, 20]. We follow the latter two approaches, developed on
computable metric spaces.



4Definition 2.3. A Martin-Löf test (ML-test) is a sequence of uniformly effective open sets Un
such that µ(Un) < 2−n.

A point x passes a ML-test U if x /∈
⋂
n Un. A point is Martin-Löf random (ML-random)

if it passes all ML-tests. We denote the set of ML-random points by MLµ.

If a set A ⊆ X can be enclosed in a ML-test (Un), i.e. A ⊆
⋂
n Un then we say that A is an

effective null set.
The following fundamental result, proved by Martin-Löf on the Cantor space with a computable

probability measure, can be extended to any computable probability space using Thm. 2.3 (almost
decidable balls behave in some way as the cylinders in the Cantor space, as their measures are
computable).

Theorem 2.4 (adapted from [8]). Every computable probability space (X,µ) admits a universal
Martin-Löf test, i.e. a ML-test U such that for all x ∈ X, x is ML-random ⇐⇒ x passes the test
U . Moreover, for each ML-test V there is a constant c (computable from a description of V ) such
that Vn+c ⊆ Un for all n.

We will often use the following result, proved by Kurtz on the Cantor space, but easily gener-
alizable to any computable probability spaces using once again Thm. 2.3.

Proposition 2.2 (adapted from [21]). MLµ is contained in every effective open set having
measure one.

One can suppose w.l.o.g. that the universal test is decreasing: Un+1 ⊆ Un.

Definition 2.4. Let (X,µ) be a computable probability space. Let (Un)n∈IN be a universal ML-test.
We call Kn := X \ Un the nth layer of the space and the sequence (Kn)n∈IN the layering of the
space.

The set MLµ of ML-random points can be expressed as an increasing union: MLµ =
⋃
nKn.

We now introduce effective versions of notions from measure and integration theory on com-
putable probability spaces.

3 Effective versions of measurability notions

In this section T : (X,µ) → Y will denote a measurable function between the computable proba-
bility space (X,µ) and the computable metric space Y . We will consider effective versions of the
notions of measurable set, measurable map, and integrable function. There are two main natural
ways to define these effective versions:

3.1 The approach up to null sets

This approach is by equivalent classes. As a concequence, the obtained definitions cannot distinguish
between objects which coincide up to a null set.



5Measurable sets. This approach to computability of measurable sets was first proposed by S̃anin
[6] on IR with the Lebesgue measure, and generalized by Edalat [7] to any second countable locally
compact Hausdorff spaces with a computable regular σ-finite measure. We present the adaptation
of this approach to computable probability spaces (which are not necessarily locally compact).

Let (X,µ) be a computable probability space and S the set of Borel subsets of X. The function
dµ : S2 → [0, 1] defined by dµ(A,B) = µ(A∆B) for all Borel sets A,B is a pseudo-metric. Let [S]µ
be the quotient of S by the equivalence relation A ∼µ B ⇐⇒ dµ(A,B) = 0 and Aµ be the set of
finite unions of µ-almost decidable balls with a natural numbering Aµ = {A1, A2, . . .}. We denote
by [A]µ the equivalence class of a Borel set A.

Proposition 3.1. ([S]µ, dµ,Aµ) is a computable metric space.

The following definition is then the straightforward adaptation of [6, 7].

Definition 3.1. A Borel set A is called a µ-recursive set if its equivalence class [A]µ is a com-
putable point of the computable metric space [S]µ.

In other words, there is a total recursive function ϕ : IN → IN such that µ(A∆Aϕ(n)) < 2−n

for all n. The measure of any µ-recursive is computable. Observe that an ideal ball need not be
µ-recursive as its measure is in general only lower semi-computable. On the other hand, µ-almost
decidable balls are always µ-recursive.

Measurable maps. To the notion of µ-recursive set corresponds a natural effective version of
µ-recursive map:

Definition 3.2. A measurable map T : (X,µ) → Y is called a µ-recursive map if there exists
a basis of balls B̂ = {B̂1, B̂2, . . . } of Y , which is effectively equivalent to the basis of ideal balls B,
and such that T−1(B̂i) are uniformly µ-recursive sets.

Integrable functions. Computability on Lp spaces has been studied in [4,5] for euclidean spaces
with the Lebesgue measure. The L1 case can be easily generalized to any computable probabil-
ity space, and a further generalization including σ-finite measures might be carried out without
difficulties.

Let (X,µ) be a computable probability space. Let F be the set of measurable functions f :
X → IR which are integrable. Let Iµ : F × F → [0,+∞) be defined by Iµ(f, g) =

∫
|f − g| dµ. Iµ

is a metric on the quotient space L1(X,µ) with the relation f ∼µ g ⇐⇒ Iµ(f, g) = 0. There is
a set F0 = {f0, f1, . . .} of uniformly computable effectively bounded functions (|fi| < Mi with Mi

computable from i) which is dense in L1(X,µ). F0 is called the set of ideal functions.

Proposition 3.2. (L1(X,µ), dµ,F0) is a computable metric space.

This leads to a first effective notion of integrable function:

Definition 3.3. A function f : X → IR is a µ-recursive integrable function if its equivalence
class is a computable point of the space L1(X,µ), i.e. f can be effectively approximated by ideal
functions in the L1 norm.

If f : X → IR is integrable, then f is a µ-recursive integrable function if and only if so are
f+ = max(f, 0) and f− = max(−f, 0).



63.2 The approach up to effective null sets

In this approach one ask the objects to be, more or less, effectively constructed. We will see that,
as a consequence, the obtained definitions cannot distinguish between objects which coincide up to
an effective null set.

Measurable sets. On a metric space, every Borel probability measure is regular, i.e. for every Borel
set A and every ε > 0 there is a closed set F and an open set U such that F ⊆ A ⊆ U and µ(U \F ) <
ε (see [22]). Edalat [7] already used regularity of measures to define µ-computable sets, a notion
that is stronger than µ-recursivity. Let us consider the adaptation of this notion to computable
probability spaces (for coherence reasons, we use the expression “effective µ-measurability” instead
of “µ-computability”).

Definition 3.4. A Borel set A is effectively µ-measurable if there are uniformly effective open
sets Ui, Vi such that X \ Vi ⊆ A ⊆ Ui and µ(Ui ∩ Vi) < 2−i.

Example 3.1. The whole space X is effectively µ-measurable. More generally, an effective open set
is effectively µ-measurable if and only if its measure is computable. The Smith-Volterra-Cantor
set, which is an effectively compact subset of [0, 1] whose Lebesgue measure is 1/2, is effectively
λ-measurable.

Measurable maps. To the notion of effectively µ-measurable set corresponds a natural effective
version of measurable map:

Definition 3.5. A measurable map T : (X,µ) → Y is called effectively µ-measurable if there
exists a basis of balls B̂ = {B̂1, B̂2, . . . } of Y , which is effectively equivalent to the basis of ideal
balls B, and such that T−1(B̂i) are uniformly effectively µ-measurable sets.

Integrable functions. In [7] a notion of µ-computable integrable function is proposed: such a
function can be effectively approximated from above and below by simple functions. This notion is
developed on any second countable locally compact Hausdorff spaces endowed with a computable
finite Borel measure. In this approach only bounded functions can be handled, as they are dominated
by simple functions, which are bounded by definition. We overcome this problem, providing at the
same time a framework for non locally compact metric spaces.

The following definition is a natural extension of the counterpart of Def. 3.4 for the characteristic
function 1A of an effectively µ-measurable set A.

Definition 3.6. A function f : X → [0,+∞] is effectively µ-integrable if there are lower semi-
computable functions gn : X → [0,+∞] and upper semi-computable functions hn : X → [0,+∞)
such that:

1. hn ≤ f ≤ gn,
2.
∫

(gn − hn) dµ < 2−n,
3. hn is bounded by some Mn which is computable from n.



7Remark 3.1. Let us define the hypographs (see [23] for a study of these sets)

hypo(f) := {(x, y) ∈ X × [0,+∞] : y < f(x)},
hypo(f) := {(x, y) ∈ X × [0,+∞] : y ≤ f(x)}.

Let A = hypo(f): one has
∫
f dµ = (µ× λ)(A). Let Fn := hypo(hn) and Un := hypo(gn + 2−n). In

the computable metric space X× [0,+∞], Un as well as the complement of Fn are effectively open,
Fn ⊆ A ⊆ Un and (µ× λ)(Un \ Fn) < 2−n+1.

Hence if effectively measurability of sets was defined for σ-finite measures, the set A would be
effectively (µ× λ)-measurable.

Observe that a set A is effectively µ-measurable if and only if its characteristic function 1A is
effectively µ-integrable.

4 The algorithmic randomness approach: Layerwise computability

4.1 Layerwise computability

Definition 4.1. A set A is layerwise semi-decidable if it is semi-decidable on every Kn, uni-
formly in n. In other words, there are uniformly effective open sets Un such that A∩Kn = Un∩Kn

for all n.

In the language of representations, a set A is layerwise semi-decidable if there is a machine
which takes n and a Cauchy representation of x ∈ Kn as inputs, and eventually halts if and only
if x ∈ A (if x /∈ Kn, nothing is assumed about the behavior the machine).

Definition 4.2. A set A is layerwise decidable if it is decidable on every Kn, uniformly in n.
In other words, both A and its complement are layerwise semi-decidable.

In the language of representations, a set A is layerwise decidable if there is a machine which
takes n and a Cauchy representation of x ∈ Kn as inputs, halts and outputs 1 if x ∈ A, 0 if x /∈ A.

Definition 4.3. A function T : (X,µ) → Y is layerwise computable if it is computable on
every Kn, uniformly in n. In other words, there are uniformly effective open sets Un,i such that
T−1(Bi) ∩Kn = Un,i ∩Kn for all n, i.

Here, B = {Bi : i ∈ IN} is the basis of ideal balls of Y . Using the language of representations, T
is layerwise computable if there is a machine which takes n and a Cauchy representation of x ∈ Kn

as inputs and outputs a Cauchy representation of T (x). We could also say that the sets T−1(Bi)
are uniformly layerwise semi-decidable.

Actually, every computability notion on computable metric spaces has in principle its layerwise
version. For instance one can define layerwise lower semi-computable functions f : X → R.

Let us state some basic properties of layerwise computable maps, when considering the push-
forward measure ν defined by ν(A) = µ(T−1(A)).

Proposition 4.1. Let T : (X,µ)→ Y be a layerwise computable map.

– The push-forward measure ν := µ ◦ T−1 ∈M(Y ) is computable.



8– T preserves ML-randomness, i.e. T (MLµ) ⊆ MLν . Moreover, there is a constant c (computable
from a description of T ) such that T (Kn) ⊆ K ′n+c for all n, where (K ′n) is the canonical layering
of (Y, ν).

– If f : (Y, ν)→ Z is layerwise computable then so is f ◦ T .
– If A ⊆ Y is layerwise decidable (resp. semi-decidable) then so is T−1(A).

The first point implies that in the particular case when Y = IR, a layerwise computable function
is then a computable random variable as defined in [24]: its distribution ν over IR is computable.
Remark that the last three points may not be true if ν is not the push-forward measure.

As shown by the following proposition, if layerwise computable objects differ at one ML-random
point then they essentially differ, i.e. on a set of positive measure.

Proposition 4.2. Let A,B ⊆ X be layerwise decidable sets and T1, T2 : (X,µ) → Y layerwise
computable functions.

– If A = B mod 0 then A ∩MLµ = B ∩MLµ.
– If T1 = T2 almost everywhere then T1 = T2 on MLµ.

We can even strengthen this result, obtaining a layerwise version of Prop. 3.1.4.5 in [25].

Proposition 4.3. Let A,B be layerwise semi-decidable sets. If A ⊆ B mod 0 then A ∩MLµ ⊆
B ∩ MLµ. More generally, if f, f ′ : X → [0,+∞] are layerwise lower semi-computable functions
such that f ≤ f ′ almost everywhere then f ≤ f ′ on MLµ.

4.2 Characterizations of effective measure-theoretic notions in terms of layerwise
computability

Measurable sets. The notion of effective µ-measurable set is strongly related to Martin-Löf
approach to randomness. Indeed, if A is a Borel set such that µ(A) = 0 then A is effectively µ-
measurable if and only if it is an effective µ-null set. If A is effectively µ-measurable, coming with
Cn, Un, then

⋃
nCn and

⋂
n Un are two particular representative of [A]µ which coincide with A on

MLµ. We can even go further, as the following result proves.

Theorem 4.1. Let A be a Borel set. We have:

1. A is µ-recursive ⇐⇒ A is equivalent to an effectively µ-measurable set.
2. A is effectively µ-measurable ⇐⇒ A is layerwise decidable.

The equivalences are uniform. Let A be a µ-recursive set: it is equivalent to a layerwise decidable
set B. By Prop. 4.2 the set A∗ := B∩MLµ is well-defined and constitutes a canonical representative
of the equivalence class of A under ∼µ. If A is already layerwise decidable then A∗ = A∩MLµ. The
operator ∗ is idempotent, it commutes with finite unions, finite intersections and complements. For
instance, if A,B are µ-recursive then A∗ ∪ B∗ is a layerwise decidable set which is equivalent to
A ∪B, so it coincides with (A ∪B)∗ by the preceding lemma.

Proposition 4.4. If A be a layerwise semi-decidable then

– µ(A) is lower semi-computable,
– µ(A) is computable if and only if A is layerwise decidable.



9Measurable maps. We obtain a version of Thm. 4.1 of measurable maps.

Theorem 4.2. Let T : (X,µ)→ Y be a measurable map. We have:

1. T is µ-recursive ⇐⇒ T coincides almost everywhere with an effectively µ-measurable map.
2. T is effectively µ-measurable ⇐⇒ T is layerwise computable.

The equivalences are uniform. Observe that if almost all implications directly derive from
Thm.4.1, the first one is not so easy as we have to carry out the explicit construction of an ef-
fectively µ-measurable function from the equivalence class of T .

Let T be µ-recursive: there is a layerwise computable function T ′ which is equivalent to T . Let
T ∗ be the restriction of T ′ to MLµ. By Prop. 4.2 T ∗ is uniquely defined.

Integrable functions. We know from Thm. 4.1 that A is effectively µ-measurable if and only if
A is layerwise decidable, which is equivalent to the layerwise computability of 1A. As a result, 1A
is effectively µ-integrable if and only if 1A is layerwise computable. The picture is not so simple
for unbounded integrable functions: although

∫
f dµ is always computable when f is effectively

µ-integrable, it is only lower semi-computable when f is layerwise computable.

Proposition 4.5. Let f : X → [0,+∞].

– If f is layerwise lower semi-computable then
∫
f dµ is lower semi-computable (uniformly in a

description of f).
– If f is bounded and layerwise computable then

∫
f dµ is computable (uniformly in a description

of f and a bound on f).

Hence, we have to add the computability of
∫
f dµ to get a characterization.

Theorem 4.3. Let f : X → [0,+∞] be a µ-integrable function. We have:

1. f is a µ-recursive integrable function ⇐⇒ f is equivalent to an effectively µ-integrable function.
2. f is effectively µ-integrable ⇐⇒ f is layerwise computable and

∫
f dµ is computable.

The equivalences are uniform, but a description of
∫
f dµ as a computable real number must be

provided.
If f is effectively µ-integrable then f = supn hn = infn gn on MLµ. Observe that the equivalence

relation induced by the L1 norm coincides with the equivalence relation “being equal µ-almost
everywhere”. Hence by Prop. 4.2, to the equivalence class of any µ-recursive integrable function f
corresponds a unique layerwise computable function f∗ defined on MLµ.

We now get a rather surprising result, which is a weak version of Prop. 4.4 for integrable
functions.

Proposition 4.6. Let f : X → [0,+∞] be a layerwise lower semi-computable function. If
∫
f dµ

is computable then f is layerwise computable.



104.3 Some more results on measurable maps

We turn our interest to the case when a computable measure is already present in the target space.
Let (X,µ) and (Y, ν) be computable probability spaces. A measurable map T : X → Y is said to be
nonsingular if for all Borel set A ∈ SY , ν(A) = 0 =⇒ µ(T−1A) = 0. In this case, the function
T−1 : [SY ]ν → [SX ]µ is well-defined and continuous. In particular, if ν is the push-forward of µ,
i.e. ν(A) = µ(T−1A) for all Borel subset A of Y , then T is nonsingular. The computability of the
function T−1 : [SY ]ν → [SX ]µ is then a possible effective version of a nonsingular measurable map.
In this section we study the relations between this property and layerwise computability.

As a corollary of Thm. 4.2, we get:

Corollary 4.1. Let T : (X,µ)→ (Y, ν) be a nonsingular measurable map. If T−1 : [SY ]ν → [SX ]µ
is computable then T is equivalent to a layerwise computable map. If ν is the push-forward of µ
through T , this is an equivalence.

Indeed, the computability of T−1 implies that T is µ-recursive. When ν is the push-forward of
µ, T−1 is an isometry so it is computable if and only if it is computable on ideal points of [SY ]ν
i.e. T is µ-recursive.

We now show that the equivalence does not hold in general. For this we need the notion of
algorithmic randomness defined by Schnorr, which is weaker than the one introduced by Martin-
Löf (see [26] for instance). A Schnorr test w.r.t. µ is a ML-test (Un)n∈IN such that the numbers
µ(Un) are uniformly computable. A point is Schnorr random if it passes all Schnorr tests. We
denote by Schµ the set of points which are Schnorr random w.r.t. µ. Of course, MLµ ⊆ Schµ. It is
not difficult to see that if x is Schnorr random and An are uniformly layerwise decidable sets such
that µ(

⋂
nAn) = 0, then x /∈

⋂
nAn.

Proposition 4.7. Let T : (X,µ) → (Y, ν) be a nonsingular layerwise computable function such
that T−1 is computable. One has T (MLµ) ⊆ Schν .

In [27] (Prop. 3.12 (a)), a computable measure µ on the Cantor space is constructed. It is
equivalent to the uniform measure λ (hence id : (X,λ) → (X, ν) is nonsingular) and there is a
sequence Ω (a Chaitin’s number) that is Martin-Löf random w.r.t. λ but not Schnorr random w.r.t.
µ. By the preceding proposition, id−1 : [S]µ → [S]λ cannot be computable. But the identity is of
course layerwise computable, as it is computable.
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26. Downey, R.G., Griffiths, E.J.: Schnorr randomness. Electr. Notes Theor. Comput. Sci. 66(1) (2002)
27. Bienvenu, L., Merkle, W.: Effective randomness for computable probability measures. Electron. Notes Theor.

Comput. Sci. 167 (2007) 117–130



12A Proofs from Section 4.1

Proof of Prop. 4.1

– Let V be an effective open subset of Y . T−1(V ) is a layerwise semi-decidable set, so there
are effective open sets Un such that T−1(V ) ∩ Kn = Un ∩ Kn. Henceν(V ) = µ(T−1(V )) =
supn(µ(Un)− 2−n) is lower semi-computable. Everything is uniform in V .

– Let U (resp. U ′) be the universal test in (X,µ) (resp. (Y, ν)). T−1(U ′n) are uniformly layerwise
semi-decidable sets and µ(T−1(U ′n)) = ν(U ′n) < 2−n. By Lem. B.1 there is a constant c such
that T−1(U ′n+c) ⊆ Un. In other words, Kn ⊆ T−1(K ′n+c).

– There is c such that T (Kn) ⊆ K ′n+c. As T is computable on Kn and f is computable on K ′n+c,
uniformly in n, f ◦ T is computable on Kn, uniformly in n.

– It is the same argument.

Proof of Prop. 4.2.

We show that A∩Kn ⊆ B ∩Kn for all n. There are effective open sets Un, Vn such that A∩Kn =
(X \Vn)∩Kn and B∩Kn = Un∩Kn. Hence (A∩Kn)\(B∩Kn) = Kn\(Un∪Vn) is the complement
of an effective open set of measure one, so it contains no ML-random point by Prop. 2.2, hence it
is empty as Kn ⊆ MLµ.

The second point is a corollary. We know from Prop. 4.1 that the common push-forward measure
ν is computable. Let Bν = {Bν

1 , B
ν
2 , . . .} be a basis of ν-almost decidable balls provided by Thm.

2.3. For each i, the ball Bν
i is layerwise decidable so the sets T−1

1 (Bν
i ) and T−1

2 (Bν
i ) are layerwise

decidable and equivalent, so they coincide on MLµ by the first point. In other words, the restrictions
of T1 and T2 to MLµ coincide.

Proof of Prop. 4.3

We first prove it for lower semi-computable functions. Let f, f ′ be lower semi-computable functions
such that f ≤ f ′ almost everywhere. There are sequences fi, f ′i of uniformly computable functions
such that f = sup fi and f ′ = sup f ′i . For a point x, f(x) ≤ f ′(x) ⇐⇒ ∀ε > 0, ∀i, f ′(x) > fi(x)− ε.
Let ε > 0 be a rational number and j ∈ IN. The effective open set U := {x : f ′(x) > fi(x)− ε} has
measure one so it contains MLµ. As this is true for every ε and i, f(x) ≤ f ′(x) when x ∈ MLµ.

Now let f, f ′ be layerwise lower semi-computable functions such that f ≤ f ′ almost everywhere.
Let us fix some n ∈ IN: there are lower semi-computable functions g, g′ such that f = g and f ′ = g′

on Kn. Let g1 = max(g, g′1Un) and g2 = max(g′, g1Un). g1 and g2 are lower semi-computable, they
coincide on Un and g1 = g = f, g2 = g′ = f ′ on Kn. Hence g1 ≤ g2 almost everywhere so g1 ≤ g2
on MLµ. As Kn ⊆ MLµ, f ≤ f ′ on Kn. And this is true for every n so f ≤ f ′ on MLµ.

Applying this to f = 1A, f ′ = 1B gives the result when A,B are layerwise semi-decidable sets.

B Proofs from Section 4.2

Proof of Thm. 4.1.

1. Let Ai be an effective sequence of finite unions of µ-almost decidable open balls such that
µ(A∆Ai) < 2−i. Ai can be expressed as an effective union of µ-almost decidable balls whose
closure are contained in Ai. Let A′i be a finite union of the corresponding closed balls such that



13µ(A′i) > µ(Ai) − 2−i. One has A′i ⊆ Ai and the complements of A′i are uniformly effective open
sets. The class [A]µ has two canonical representatives that are effectively µ-measurable: lim inf A′i
and lim supAi and the sets Fn =

⋂
i>nA

′
i and Un =

⋃
i>nAi witness their effective µ-measurability.

Conversely, let A be effectively µ-measurable, coming with Fn, Un. Expressing Un as an effective
union of µ-almost decidable balls, one can effectively extract a finite union An such that µ(An) >
µ(Fn). Then A∆An ⊆ Un \ Fn so µ(A∆An) < 2−n.
2. If A is effectively µ-measurable, coming with Fn, Un then Un \Fn is a ML-test, so there is c such
that (Un+c \Fn+c)∩Kn = ∅ for all n. One easily gets A∩Kn = Un+c∩Kn = Fn+c∩Kn. Conversely,
if A is layerwise decidable, then the complements of Fn := A ∩ Kn and F ′n := (X \ A) ∩ Kn are
uniformly effective open sets. The sets Fn and Un = X \ F ′n make A effectively µ-measurable.

Proof of Prop. 4.4

Let Un be effective open sets such that A ∩ Kn = Un ∩ Kn. First, µ(A) = supn(µ(Un) − 2−n) is
lower semi-computable. We suppose now that µ(A) is computable and show that A is effectively
µ-measurable. Let Vn = Un ∪ (X \ Kn). A ⊆ Vn and µ(Vn) ≤ µ(A) + 2−n. Expressing Un as an
effective union of µ-almost decidable balls, one can effectively extract a finite union An such that
µ(An) > µ(A)−2−n (indeed, µ(Un) > µ(A)−2−n). Now, Fn := An∩Kn ⊆ Un∩Kn ⊆ A. So Fn, Vn
make A effectively µ-measurable, hence layerwise decidable.

Proof of Thm. 4.2

1. Let T be a µ-recursive map. We construct an effecively µ-measurable function T ∗ such that
T = T∗ almost everywhere. We will need some lemmas:

Lemma B.1. Let An be uniformly layerwise semi-decidable sets such that µ(An) < 2−n. There
exists c such that Kn ∩An+c = ∅ for all n.

Proof. There are uniformly effective open sets Unp such that Kp∩An = Kp∩Unp . Let Vn = Un+1
n+1 . As

µ(X\Kn+1) < 2−n−1, µ(Vn) ≤ 2−n so (Vn)n∈IN is a ML-test, hence there is c such that Kn∩Vn+c = ∅
for all n. We conclude observing that Kn ∩An+c+1 = Kn ∩ Un+c+1

n ⊆ Kn ∩ Vn+c.

Lemma B.2. Let Ai be uniformly µ-recursive sets. The set
⋃
iAi is µ-recursive if and only if its

measure is computable. In this case, (
⋃
iAi)

∗ =
⋃
iA
∗
i .

Proof. This is a corollary of Prop. 4.4. Indeed, A∗i being uniformly layerwise decidable,
⋃
iA
∗
i is

layerwise semi-decidable. If its measure is computable then it is layerwise decidable by Prop. 4.4.
Hence A :=

⋃
iAi, which is equivalent to it, satisfies A∗ = (

⋃
iA
∗
i )
∗ = (

⋃
iA
∗
i ) ∩MLµ =

⋃
iA
∗
i .

Construction of T ∗. Let T : (X,µ) → Y be a µ-recursive map, coming with a basis B̂ =
{B̂1, B̂2, . . .} of the topology on Y such that the sets Ai := T−1(B̂i) are uniformly µ-recursive. The
sets A∗i are then well defined. Let x ∈ ML: we define Sx :=

⋂
i:x∈A∗

i
B̂i.

Claim. Sx contains at most one point.

Proof. Let ε > 0 and E = {i : B̂i has radius < ε}. As Y =
⋃
i∈E B̂i, MLµ = X∗ = (T−1(Y ))∗ =

(
⋃
i∈E Ai)

∗ =
⋃
i∈E A

∗
i by Lem. B.2). Hence there is i ∈ E such that x ∈ A∗i , so Sx ⊆ B̂i whose

diameter is less than 2ε. As this is true for every ε > 0, it follows that diam(Sx) = 0.



14Lemma B.3. Sx is not empty.

Proof. As we have just seen, for each i there is a ball B̂ni such that x ∈ (T−1(B̂ni))
∗ and B̂ni has

a radius < 2−i. Let si be the center of the ball B̂ni . The sequence (si)i∈IN is a Cauchy sequence.
Indeed, let i < j: x ∈ A∗ni ∩A

∗
nj = (T−1(B̂ni ∩ B̂nj ))∗, so B̂ni ∩ B̂nj 6= ∅ and hence d(si, sj) < 2−i+1.

Let y be the limit of si, which exists by completeness of Y . We now state and prove two claims
which will enable us to conclude.

Claim. For every k, if x ∈ A∗k then y ∈ cl(B̂k).

Proof (of the claim). Indeed, for all i, B̂k ∩ B̂ni 6= ∅ as x ∈ A∗k ∩ A∗ni . So y is also the limit of a
sequence of points belonging to B̂k.

Claim. For every k, if x ∈ A∗k then y ∈ B̂k.

Proof (of the claim). There is a r.e. set E such that B̂k =
⋃
i∈E B̂i and cl(B̂i) ⊆ B̂k for all i ∈ E.

As B̂k, B̂i are all effectively µ-measurable, A∗k =
⋃
i:cl(Bi)⊆Bk A

∗
i by Lem. B.2 so there is i ∈ E such

that x ∈ A∗i hence y ∈ cl(B̂i) ⊆ B̂k by the preceding claim.

Now we conclude the proof of lemma B.3: y ∈
⋂
k:x∈A∗

k
B̂k = Sx.

Let us define T ∗ : MLµ → Y by {T ∗(x)} := Sx for all x ∈ MLµ. Of course, the function T ∗ can
be seen as a function of X by extending it in an arbitrary measurable way.

Claim. For every k, if T ∗(x) ∈ B̂k then x ∈ A∗k.

Proof. If T ∗(x) ∈ B̂k then there is i such that B(T ∗(x), 2−i+1) ⊆ B̂k. Hence B̂ni ⊆ B̂k so x ∈ A∗ni ⊆
A∗k.

Finally, for x ∈ ML we have T ∗(x) ∈ B̂k ⇐⇒ x ∈ A∗k, so T ∗−1(B̂k) = A∗k = (T−1(B̂k))∗ hence
we get the following property:

T ∗−1(B̂i) = (T−1(B̂i))∗ for all i. (1)

From this it directly follows that T ∗ is effectively µ-measurable and that it coincides with T
almost everywhere. So we have proved the first implication of point 1.

Conversely, if there is a basis B̂ = {B̂1, B̂2, . . .} such that the sets T−1(B̂i) are uniformly
effectively µ-measurable, then these sets are uniformly µ-recursive by Thm. 4.1 (point 1) so T is
µ-recursive. Moreover, by the same theorem (point 2.) the sets T−1(B̂i) are uniformly layerwise
decidable so there are uniformly effective open sets Un,i such that Kn ∩ T−1(B̂i) = Kn ∩ Un,i. As
B̂ is effectively equivalent to B, T is layerwise computable.

Suppose now that T is layerwise computable. By Prop. 4.1 the push-forward measure ν = µ◦T−1

is computable: let B̂ be a basis of ν-almost decidable balls provided by Thm. 2.3. As T is layerwise
computable, the sets T−1(B̂i) are uniformly layerwise decidable, hence effectively µ-measurable, so
T is effectively µ-measurable.



15Proof of Prop. 4.5

– For n, δ > 0, let Aδ,n = f−1(δn,+∞]. One has δ
∑

n>0 1Aδ,n < f ≤ δ(1 +
∑

n>0 1Aδ,n), so∫
f dµ = supδ

∑
n>0 µ(Aδ,n). As Aδ,n is a layerwise semi-decidable, uniformly in δ, n,

∫
f dµ is

lower semi-computable.
– Let a be a bound on f . Then

∫
f dµ = infn(

∫
f1Fn dµ + a2−n) is upper semi-computable by

Prop. 2.1. Applying the same argument to a − f gives that
∫
f dµ = a −

∫
(a− f) dµ is lower

semi-computable.

Proof of Thm. 4.3

The proof goes this way:

(a) f is a computable point of L1(X,µ) ⇒ f is equivalent to an effectively µ-integrable function,
(b) f is effectively µ-integrable ⇒

∫
f dµ is computable and f is layerwise computable,

(c)
∫
f dµ is computable and f is layerwise computable ⇒ f is a computable point of L1(X,µ)

This will imply point 1. and one implication of point 2. To derive the other implication, let us make
a preliminary observation.

Lemma B.4. If f is effectively µ-integrable and f ′ = f on MLµ then f ′ is also effectively µ-
integrable.

Proof. Let hn, gn be associated to f . The problem is that hn ≤ f ′ ≤ gn may not be satisfied outside
MLµ. To correct this we construct g′n (resp. h′n) which coincides with gn (resp. hn) on MLµ and such
that g′n = +∞ and h′n = 0 outside MLµ. We put g′n := gn+2−ntµ where tµ =

∑
n 1Un (Un being the

universal ML-test) and h′n := hn1Kin where in is a computable sequence such that Mn2−in < 2−n

where Mn is a bound on hn.

Hence if f is layerwise computable and
∫
f dµ is computable then f is equivalent to an effectively

µ-integrable function f2 (by (c) and (a)) which is in turn layerwise computable (by (b)). Using
Prop. 4.2, f2 = f on MLµ. By the preceding lemma, f is then effectively µ-integrable, so the other
implication of point 2. is proved.

We now prove (a), (b) and (c).
(a) Let f be a computable point of L1(X,µ) and fn a computable sequence of ideal functions
such that

∫
|f − fn|dµ < 2−n. The class of f in L1 has two effectively µ-integrable representatives

lim inf fi and lim sup fi. The functions gn := supi>n fi and hn := infi>n fi witness their effective
µ-integrability.
(b) Let f be effectively µ-integrable, coming with hn, gn. First,

∫
f dµ = supn

(∫
gn dµ− 2−n

)
=

infn
(∫
hn dµ+ 2−n

)
is both lower and upper semi-computable.

Let Un = {x : ∃p, gn+2p(x) − hn+2p(x) > 2−p}. By Tchebychev inequality, µ{x : gn+2p(x) −
hn+2p(x) > 2−p} ≤ 2p

∫
(gn+2p − hn+2p) dµ ≤ 2−n−p so µ(Un) ≤

∑
p 2−n−p ≤ 2−n. Un is then a

ML-test so there is c such that Kn ∩ Un+c = ∅ for all n. Hence on Kn, gn+c+2p − 2−p ≤ hn+c+2p ≤
f ≤ gn+c+2p ≤ hn+c+2p + 2−p for all p, so f = supp(gn+c+2p − 2−p) = infp(hn+c+2p + 2−p) which is
both lower and upper semi-computable, uniformly in n.
(c) Let f be a layerwise computable function such that

∫
f dµ is computable. We first use the

following (easy) equality∫
|f − g|dµ =

∫
f dµ+

∫
g dµ− 2

∫
min(f, g) dµ (2)



16which holds for nonnegative integrable real functions f, g. Then we use Prop. 4.5: if g is a layerwise
computable bounded function then so is min(f, g), hence

∫
min(f, g) dµ is computable from g and

a bound on g. From this is follows that if g = fi ∈ F0 is an ideal function then
∫
|f − fi|dµ

is computable, uniformly in i. In other words, the distances of f to ideal points of L1(X,µ) are
uniformly computable so f is a computable point of L1(X,µ).

Proof of Prop. 4.6

Let f be a layerwise lower semi-computable such that
∫
f dµ is computable. Using equality (2) in

the proof of Thm. 4.3 and Prop. 4.5,
∫
|f − fi| dµ is upper semi-computable for fi ∈ F0, uniformly

in i. It follows that f is a computable point of L1(X,µ), as for each n one can effectively find fi
such that

∫
|f − fi|dµ < 2−n. By Thm. 4.3 f is equivalent to a layerwise computable function f ′.

We now apply Prop. 4.3 to f and f ′: they coincide on MLµ, so f is layerwise computable.

C Proofs from section 4.3

Proof of Prop. 4.7

Let Vn be a ν-Schnorr test. One can suppose w.l.o.g. that Vn+1 ⊆ Vn. As Vn are uniformly effectively
ν-measurable, T−1Vn are uniformly effectively µ-measurable. As ν(

⋂
n Vn) = 0 and T is nonsingular,

µ(
⋂
n T
−1(Vn)) = 0 so for each i there is ni such that µ(T−1(Vni)) < 2−i and such an ni can be

effectively computed from i as µ(T−1(Vn)) is computable from n. By Lem. B.1,
⋂
n T
−1(Vn) is then

an effective µ-null set, so no ML random point belongs to it.


